Free Access
Issue
RAIRO-Oper. Res.
Volume 53, Number 5, November-December 2019
Page(s) 1843 - 1860
DOI https://doi.org/10.1051/ro/2018112
Published online 18 October 2019
  • L. Catarinucci, D. De Donno, L. Mainetti, L. Palano, L. Patrono, M.L. Stefanizzi and L. Tarricone, An IoT-Aware architecture for smart healthcare systems. IEEE Internet Things 2 (2015) 515–526. [CrossRef] [Google Scholar]
  • A.Y.L. Chong, M.J. Liu, J. Luo and O. Keng-Boon, Predicting RFID adoption in healthcare supply chain from the perspectives of users. Int. J. Prod. Econ. 159 (2015) 66–75. [Google Scholar]
  • H. Dai and M.M. Tseng, The impacts of RFID implementation on reducing inventory inaccuracy in a multi-stage supply chain. Int. J. Prod. Econ. 139 (2012) 634–641. [Google Scholar]
  • A. Dasci and V. Verter, A continuous model for production-distribution system design. Eur. J. Oper. Res. 129 (2001) 287–298. [Google Scholar]
  • W.A. Ellogood, J.F. Campbell and J. North, Continuous approximation models for mixed load school bus routing. Transp. Res. B: Methodological 77 (2015) 182–198. [CrossRef] [Google Scholar]
  • S.J. Erlebacher and R.D. Meller, The interaction of location and inventory in designing distribution systems. IIE Transp. 32 (2000) 155–166. [Google Scholar]
  • C.K. Jaggi, S. Tiwari and A. Shafi, Effect of deterioration on two-warehouse inventory model with imperfect quality. Comput. Ind. Eng. 88 (2015) 378–385. [Google Scholar]
  • C.K. Jaggi, S. Tiwari and S.K. Goel, Replenishment policy for non-instantaneous deteriorating items in a two storage facilities under inflationary conditions. Int. J. Ind. Eng. Comput. 7 (2016) 489–506. [Google Scholar]
  • C.K. Jaggi, S. Tiwari and S.K. Goel, Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities. Ann. Oper. Res. 248 (2017) 253–280. [Google Scholar]
  • C.K. Jaggi, V.S.S. Yadavalli, A. Sharma and S. Tiwari, A Fuzzy EOQ model with allowable shortage under different trade credit terms. Appl. Math. Inf. Sci. 10 (2016) 785–805. [CrossRef] [Google Scholar]
  • W. Jakkhupan, S. Arch-int and Y. Li, Business process analysis and simulation for the RFID and EPC global Network enabled supply chain: a proof-of-concept approach. J. Network Comput. App. 34 (2011) 949–957. [CrossRef] [Google Scholar]
  • B. Kinsella, The Wal-Mart factor. Ind. Eng. 11 (2003) 32–36. [Google Scholar]
  • H. Lee and Ö. Özer, Unlocking the value of RFID. Prod. Oper. Manage. 16 (2017) 40–64. [CrossRef] [Google Scholar]
  • I. Lee and B.C. Lee, An investment evaluation of supply chain RFID technologies: a normative modeling approach. Int. J. Prod. Econ. 125 (2010) 313–323. [Google Scholar]
  • T.P. Lu, A.J.C. Trappey, Y.K. Chen and Y.D. Chang, Collaborative design and analysis of supply chain network management key processes model. J. Network Comput. Appl. 36 (2013) 1503–1511. [CrossRef] [Google Scholar]
  • J.J. Nativi and S. Lee, Impact of RFID information-sharing strategies on a decentralized supply chain with reverse logistics operations. Int. J. Prod. Econ. 136 (2012) 366–377. [Google Scholar]
  • E.W.T. Ngai, F.F.C. Suk and S.Y.Y. Lo, Development of an RFID-based sushi management system: the case of a conveyor-belt sushi restaurant. Int. J. Prod. Econ. 112 (2008) 630–645. [Google Scholar]
  • E.W.T. Ngai, B.K.S. Cheung, S.S. Lam and C.T. Ng, RFID value in aircraft parts supply chains: a case study. Int. J. Prod. Econ. 1472014 (2014) 330–339. [Google Scholar]
  • E.W.T. Ngai, K.K.L. Moon, F.J. Riggins and C.Y. Yi, RFID research: an academic literature review (1995–2005) and future research directions. Int. J. Prod. Econ. 112 (2008) 510–520. [Google Scholar]
  • L. Nozick and M. Turnquist, Inventory, transportation, service quality and the location of distribution centers. Eur. J. Oper. Res. 129 (2001) 362–371. [Google Scholar]
  • A. Sarac, N. Absi and S. Dauzere-Peres, A literature review on the impact of RFID technologies on supply chain management. Int. J. Prod. Econ. 128 (2010) 77–95. [Google Scholar]
  • Z.M. Shen, C. Coullard and M.S. Daskin, A joint location-inventory model. Transp. Sci. 37 (2003) 40–55. [CrossRef] [Google Scholar]
  • Z.M. Shen, Integrated supply chain design models: a survey and future research directions. J. Ind. Manage. Optim. 3 (2007) 1–27. [CrossRef] [Google Scholar]
  • J. Shu, An efficient greedy heuristic for warehouse-retailer network design optimization. IIE Transportation 44 (2010) 183–192. [Google Scholar]
  • J.G. Szmerekovsky, V. Tilson and J. Zhang, Analytical model of adoption of item level RFID in a two-echelon supply chain with shelf-space and price-dependent demand. Decis. Support Syst. 51 (2011) 833–841. [Google Scholar]
  • J. Tang, Designing an anti-swindle Mahjong Leisure Prototype System using RFID and ontology theory. J. Network Comput. App. 39 (2014) 292–301. [CrossRef] [Google Scholar]
  • S. Tiwari, L.E. Cárdenas-Barrón, A. Khanna and C.K. Jaggi, Impact of trade credit and inflation on retailer’s ordering policies for non-instantaneous deteriorating items in a two-warehouse environment. Int. J. Prod. Econ. 176 (2016) 154–169. [Google Scholar]
  • S. Tiwari, W. Ahmed and B. Sarkar, Multi-item sustainable green production system under trade-credit and partial backordering. J. Cleaner Prod. 204 (2018) 82–95. [CrossRef] [Google Scholar]
  • S. Tiwari, Y. Daryanto and H.M. Wee, Sustainable inventory management with deteriorating and imperfect quality items considering carbon emission. J. Cleaner Prod. 192 (2018) 281–292. [CrossRef] [Google Scholar]
  • Y.C. Tsao, Design of a carbon-efficient supply chain network under trade credits. Int. J. Syst. Sci. Oper. Logist. 2 (2015) 177–186. [Google Scholar]
  • Y.C. Tsao, Joint location, inventory and preservation decisions for non-instantaneous deterioration items under delay in payments. Int. J. Syst. Sci. 47 (2016) 572–585. [Google Scholar]
  • Y.C. Tsao and J.C. Lu, A supply chain network design considering transportation cost discounts. Transp. Res. Part E: Logist. Transp. Rev. 48 (2012) 401–414. [CrossRef] [Google Scholar]
  • Y.C. Tsao, D. Mangotra, J.C. Lu and M. Dong, A continuous approximation approach for the integrated facility-inventory allocation problem. Eur. J. Oper. Res. 222 (2012) 216–228. [Google Scholar]
  • Y.C. Tsao, Designing a supply chain network for deteriorating inventory with preservation effort under trade credits. Int. J. Prod. Res. 54 (2016) 3837–3851. [Google Scholar]
  • A. Ustundag and M. Tanyas, The impacts of radio frequency identification (RFID) technology on supply chain costs. Transp. Res. Part E: Logist. Transp. Rev. 45 (2009) 29–38. [CrossRef] [Google Scholar]
  • S. Whang, Timing of RFID adopting in a supply chain. Manage. Sci. 56 (2010) 343–355. [Google Scholar]
  • H. Yang, W. Zhuo, Y. Zha and H. Wang, Two-period supply chain with flexible trade credit contract. Expert Syst. App. 66 (2016) 95–105. [CrossRef] [Google Scholar]
  • H. Yang, W. Zhuo and L. Shao, Equilibrium evolution in a two-echelon supply chain with financially constrained retailers: the impact of equity financing. Int. J. Prod. Econ. 185 (2017) 139–149. [Google Scholar]
  • H. Yang, H. Dai and W. Zhuo, Permissible delay period and pricing decisions in a two-echelon supply chain. Appl. Econ. Lett. 24 (2017) 820–825. [Google Scholar]
  • A. Yolmeh and N. Salehi, An outer approximation method for an integration of supply chain network designing and assembly line balancing under uncertainty. Comput. Ind. Eng. 83 (2015) 297–306. [Google Scholar]
  • A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, Internet of Things for Smart Cities. IEEE Internet Things 1 (2014) 22–32. [CrossRef] [Google Scholar]
  • W. Zhuo, L. Shao and H. Yang, Mean-variance analysis of option contracts in a two-echelon supply chain. Eur. J. Oper. Res. 271 (2018) 535–547. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.