Free Access
Issue
RAIRO-Oper. Res.
Volume 54, Number 1, January-February 2020
Page(s) 231 - 249
DOI https://doi.org/10.1051/ro/2018117
Published online 11 February 2020
  • G.I. Falin and J.G.C. Templeton, Retrial Queues. Chapman and Hall, London (1997). [CrossRef] [Google Scholar]
  • J.R. Artalejo and A. Gómez-Corral, Retrial Queueing Systems, Springer-Verlag, Berlin Heidelberg (2008). [CrossRef] [Google Scholar]
  • J.R. Artalejo, A classified bibliography of research on retrial queues: progress in 1990–1999. Top 7 (1999) 187–211. [CrossRef] [MathSciNet] [Google Scholar]
  • J.R. Artalejo, Accessible bibliography on retrial queues: progress in 2000–2009. Math. Comput. Model. 51 (2010) 1071–1081. [Google Scholar]
  • J. Kim and B. Kim, A survey of retrial queueing systems. Ann. Oper. Res. 247 (2016) 3–36. [Google Scholar]
  • I. Dimitriou, A queueing model with two classes of retrial customers and paired services. Ann. Oper. Res. 238 (2015) 1–21. [Google Scholar]
  • I. Dimitriou, A retrial queue to model a two-relay cooperative wireless system with simultaneous packet reception, edited by S. Wittevrongel and T. Phung-Duc. In: ASMTA 2016, LNCS, Springer, Cardiff 9845 (2016) 123-139. [Google Scholar]
  • I. Dimitriou, A two class retrial system with coupled orbit queues. Probab. Eng. Info. Sci. 31 (2017) 139–179. [CrossRef] [Google Scholar]
  • O.J. Boxma and J.A.C. Resing, Vacation and polling models with retrials. In: 11th European Workshop on Performance Engineering (EPEW 11). Florence (September 2014). [Google Scholar]
  • M.A. Abidini, J. Resing and O. Boxma, Analysis and optimization of vacation and polling models with retrials. Perform. Eval. 98 (2016) 52–69. [CrossRef] [Google Scholar]
  • B. Krishna Kumar, A. Vijayakumar and D. Arivudainambi, An M/G/1 retrial queueing system with two-phase service and preemptive resume. Ann. Oper. Res. 113 (2002) 61–79. [Google Scholar]
  • B. Krishna Kumar, S. Pavai Madheswari and D. Arivudainambi, On the busy period of an M/G/1 retrial queueing system with two-phase service and preemptive resume. Stoch. Model. App. 8 (2005) 18–34. [Google Scholar]
  • J. Wu, J. Wang and Z. Liu, A discrete-time Geo/G/1 retrial queue with preferred and impatient customers. Appl. Math. Model. 37 (2013) 2552–2561. [Google Scholar]
  • I. Dimitriou, A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations. Appl. Math. Model. 37 (2013) 1295–1309. [Google Scholar]
  • J.R. Artalejo, A.N. Dudin and V.I. Klimenok, Stationary analysis of a retrial queue with preemptive repeated attempts. Oper. Res. Lett. 28 (2001) 173–180. [CrossRef] [Google Scholar]
  • J.R. Artalejo, V.C. Joshua and A. Krishnamurthy, An M/G/1 retrial queue with orbital search by the server, edited by J.R. Artalejo and A. Krishnamoorthy. In Advances in Stochastic Modelling. Notable Publications, Inc., New Jersey(2002) 41–54. [Google Scholar]
  • A.N. Dudin, A. Krishnamoorthy, V.C. Joshua and G.V. Tsarenkov, Analysis of the BMAP/G/1 retrial system with search of customers from the orbit. Eur. J. Oper. Res. 157 (2004) 169–179. [Google Scholar]
  • A. Krishnamoorthy, T.G. Deepak and V.C. Joshua, An M/G/1 retrial queue with nonpersistent customers and orbital search. Stoch. Anal. App. 23 (2005) 975–997. [CrossRef] [Google Scholar]
  • S.R. Chakravarthy, A. Krishnamoorthy and V.C. Joshua, Analysis of a multi-server retrial queue with search of customers from the orbit. Perform. Eval. 63 (2006) 776–798. [CrossRef] [Google Scholar]
  • F. Zhang and J. Wang, Stochastic analysis of a finite source retrial queue with spares and orbit search, MMB & DFT, LNCS 7201 (2012) 16–30. [Google Scholar]
  • T.G. Deepak, A.N. Dudin and V.C. Joshua, A. Krishnamoorthy, On an M(X) /G/1 Retrial System with two types of search of customers from the orbit. Stoch. Anal. App. 31 (2013) 92–107. [CrossRef] [Google Scholar]
  • D. Arivudainambi and P. Dodhandaraman, Retrial queueing system with balking, optional service and vacation. Ann. Oper. Res. 229 (2015) 67–84. [Google Scholar]
  • R. Srinivasan, J. Talim and J. Wang, Performance analysis of a call center with interactive voice response units. TOP 12 (2004) 91–110. [CrossRef] [Google Scholar]
  • A. Gómez-Corral, Stochastic analysis of a single server retrial queue with general retrial time. Nav. Res. Logist. 46 (1999) 561–581. [CrossRef] [MathSciNet] [Google Scholar]
  • M.F. Neuts, Structured Stachastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker, New York, NY (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.