Free Access
RAIRO-Oper. Res.
Volume 54, Number 1, January-February 2020
Page(s) 251 - 266
Published online 11 February 2020
  • L.E. Porteus, Investing in reduced setups in the EOQ model. Manage. Sci. 31 (1985) 998–1010. [Google Scholar]
  • H. Groenevelt, L. Pintelon and A. Seidmann, Production lot sizing with machine breakdown. Manage. Sci. 38 (1992) 104–123. [Google Scholar]
  • H. Groenevelt, L. Pintelon and A. Seidmann, Production batching with machine breakdown and safety stocks. Oper. Res. 40 (1992) 959–971. [Google Scholar]
  • M.A. Hariga, M. Ben-Daya, Some stochastic inventory models with deterministic variable lead time. Eur. J. Oper. Res. 113 (1999) 42–51. [Google Scholar]
  • C.H. Kim and Y. Hong, An optimal production run length in deteriorating production processes. Int. J. Prod. Econ. 58 (1999) 183–189. [Google Scholar]
  • H.H. Lee, M.J. Chandra and V.J. Deleveaux, Optimal batch size and investment in multistage production systems with scrap. Prod. Plan. Cont. 8 (1997) 586–596. [CrossRef] [Google Scholar]
  • K.L. Hou, An EPQ model with setup cost and process quality as functions of capital expenditure. Appl. Math. Model. 31 (2007) 10–17. [Google Scholar]
  • B. Sarkar and S. Saren, Product inspection policy for an imperfect production system with inspection errors and warranty cost. Eur. J. Oper. Res. 248 (2016) 263–271. [Google Scholar]
  • S.K. Goyal and L.E. Cárdenas-Barrón, Economic production quantity with imperfect production system. Ind. Eng. J. 34 (2005) 33–36. [Google Scholar]
  • S. Sana, S.K. Goyal and K.S. Chaudhuri, On an imperfect production process in a volume flexible inventory model. Int. J. Prod. Econ. 105 (2007) 548–559. [Google Scholar]
  • L.E. Cárdenas-Barrón, On optimal batch sizing in a multi-stage production system with rework consideration. Eur. J. Oper. Res. 196 (2009) 1238–1244. [Google Scholar]
  • S. Sana, A production-inventory model in an imperfect production process. Eur. J. Oper. Res. 200 (2010) 451–464. [Google Scholar]
  • S. Sana, A production-inventory model of imperfect quality products in a three-layer supply chain. Decis. Sup. Syst. 50 (2011) 539–547. [CrossRef] [Google Scholar]
  • B. Sarkar, An inventory model with reliability in an imperfect production process, Appl. Math. Comput. 218 (2012) 4881–4891. [Google Scholar]
  • B. Sarkar and M. Sarkar, An economic order manufacturing quantity model with probabilistic deterioration in a production system. Econ. Model. 31 (2013) 245–252. [Google Scholar]
  • B. Sarkar, P. Mandal and S. Sarkar, An EMQ model with price and time dependent demand under the effect of reliability and inflation. Appl. Math. Comput. 231 (2014) 414–421. [Google Scholar]
  • L.Y. Ouyang, C.J. Chuang, C.H. Ho and C.W. Wu, An integrated inventory model with quality improvement and two-part credit policy. TOP 22 (2014) 1042–1061. [CrossRef] [Google Scholar]
  • B. Sarkar, L.E. Cárdenas-Barrón, M. Sarkar and M.L. Singgih, An economic production quantity model with random defective rate, rework process and backorders for a single stage production system. J. Manuf. Syst. 33 (2014) 423–435. [Google Scholar]
  • M. Deb and K.S. Chaudhuri, A note on the heuristic for replenishment of trended inventories considering shortages. J. Oper. Res. Soci. 38 (1987) 459–463. [CrossRef] [Google Scholar]
  • L.E. Cárdenas-Barrón, The economic production quantity (EPQ) with shortage derived algebraically. Int. J. Prod. Econ. 70 (2001) 289–292. [Google Scholar]
  • S. Sana, S.K. Goyal and K.S. Chaudhuri, A production inventory model for a deteriorating item with trended demand and shortages. Eur. J. Oper. Res. 157 (2004) 357–371. [Google Scholar]
  • L.E. Cárdenas-Barrón, Economic production quantity with rework process at a single-stage manufacturing system with planned backorders. Comput. Ind. Eng. 57 (2009) 1105–1113. [Google Scholar]
  • S. Sana, Preventive maintenance and optimal buffer inventory for products sold with warranty in an imperfect production system. Int. J. Prod. Res. 50 (2012) 6763–6774. [Google Scholar]
  • M. Das Roy and S. Sana, Random sales price-sensitive stochastic demand: an imperfect production model with free repair warranty. J. Adv. Manage. Res. 14 (2017) 408–424. [CrossRef] [Google Scholar]
  • N.M. Modak, S. Panda and S. Sana, Managing a two-echelon supply chain with price, warranty and quality dependent demand. Cogent Bus. Manage. 2 (2015) 1–13. [CrossRef] [Google Scholar]
  • L.E. Cárdenas-Barrón, The derivation of EOQ/EPQ inventory models with two backorders costs using analytic geometry and algebra. Appl. Math. Model. 35 (2011) 2394–2407. [Google Scholar]
  • B. Sarkar and S. Sarkar, An improved inventory model with partial backlogging, time varying deterioration and stock-dependent demand. Econ. Model. 30 (2013) 924–932. [Google Scholar]
  • B. Sarkar, A. Majumder, M. Sarkar, B.K. Dey and G. Roy, Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction. J. Ind. Manage. Opt. 13 (2017) 1085–1104. [Google Scholar]
  • B.K. Dey, B. Sarkar, M. Sarkar and S. Pareek, An integrated inventory model involving discrete setup cost reduction, variable safety factor, selling-price dependent demand, and investment. RAIRO - Oper. Res. 53 (2019) 39–57. [CrossRef] [EDP Sciences] [Google Scholar]
  • B. Sarkar, S.S. Sana and K.S. Chaudhuri, An inventory model with finite replenishment rate, trade credit policy and price-discount offer. J. Ind. Eng. 2013 (2013) 1–18. [Google Scholar]
  • B. Sarkar, S. Sana and K.S. Chaudhuri, An imperfect production process for time varying demand with inflation and time value of money – an EMQ model. Exp. Syst. App. 38 (2011) 13543–13548. [Google Scholar]
  • B. Sarkar, S. Sana and K.S. Chaudhuri, Optimal reliability, production lotsize and safety stock: an economic manufacturing quantity model. Int. J. Manage. Sci. Eng. Manage. 5 (2010) 192–202. [Google Scholar]
  • S. Sana, Optimal selling price and lotsize with time varying deterioration and partial backlogging. App. Math. Comput. 217 (2010) 185–194. [CrossRef] [Google Scholar]
  • B. Sarkar, S. Sana and K.S. Chaudhuri, A stock-dependent inventory model in an imperfect production process. Int. J. Procu. Manage. 3 (2010) 361–378. [Google Scholar]
  • E.L. Porteus, Optimal lot sizing, process quality improvement and setup cost reduction. Oper. Res. 34 (1986) 137–144. [Google Scholar]
  • L.Y. Ouyang, N.C. Yeh and K.S. Wu, Mixture inventory model with backorders and lost sales for variable lead time. J. Oper. Res. Soc. 47 (1996) 829–832. [Google Scholar]
  • J.C. Pan and M.C. Lo, The learning effect on setup cost reduction for mixture inventory models with variable lead time. Asia-Pac. J. Oper. Res. 25 (2008) 513–529. [CrossRef] [Google Scholar]
  • B. Sarkar and I.K. Moon, Improved quality, setup cost reduction, and variable backorder costs in an imperfect production process. Int. J. Prod. Econ. 155 (2014) 204–213. [Google Scholar]
  • B. Sarkar and A. Majumder, Integrated vendor–buyer supply chain model with vendor’s setup cost reduction. Appl. Math. Comput. 224 (2013) 362–371. [MathSciNet] [Google Scholar]
  • K.J. Chung and K.L. Hou, An optimal production run time with imperfect production processes and allowable shortages. Comput. Oper. Res. 30 (2003) 483–490. [Google Scholar]
  • B. Sarkar, M. Ullah and N. Kim, Environmental and economic assessment of closed-loop supply chain with remanufacturing and returnable transport items. Comput. Ind. Eng. 111 (2017) 143–163. [Google Scholar]
  • J.D. Hong, S.H. Xu and J.C. Hayya, Process quality improvement and setup reduction in dynamic lot sizing. Int. J. Prod. Res. 31 (1993) 2693–2708. [Google Scholar]
  • R. Hall, Zero Inventories. Dow Jones-Irwin, Homewood, IL, 1983. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.