Free Access
RAIRO-Oper. Res.
Volume 54, Number 2, March-April 2020
Page(s) 393 - 412
Published online 27 February 2020
  • M. Aghassi and D. Bertsimas, Robust game theory. Math. Program. Ser. 107 (2006) 231–273. [CrossRef] [Google Scholar]
  • S. Bade, Ambiguous act equilibria. Games. Econ. Behav. 71 (2010) 246–260. [Google Scholar]
  • S. Bandyopadhyay, P. Kumar Nayak and M. Pa, Nash equilibrium solution in trapezoidal fuzzy environment. IOSR J. Eng. (IOSRJEN) 3 (2013) 7–14. [CrossRef] [Google Scholar]
  • K. Bouchama, M.S. Radjef and L. Sais, Z-equilibrium for a CSP game. International Symposium on Artificial Intelligence and Mathematics. Fort Lauderdale, FL (2016). [Google Scholar]
  • D. Butnariu, Fuzzy games: a description of the concept. Fuzzy Sets Syst. 1 (1978) 181–192. [CrossRef] [Google Scholar]
  • D. Butnariu, Advances in Fuzzy Set Theory and Applications, edited by M.M. Gupta, R.K. Ragde and R.R. Yager. In: Advances in Fuzzy Set Theory and Applications. Kluwer, Boston, MA (1979) 339–359. [Google Scholar]
  • T. Chunqiao and Z. Qiang, Generalized two-person zero-sun games with fuzzy strategies and fuzzy payoffs. Fuzzy Syst. Math. 20 (2006) 95–101. [Google Scholar]
  • C.B. Das and S.K. Roy, Fuzzy based GA for entropy bimatrix goal game. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 18 (2010) 779–799. [CrossRef] [Google Scholar]
  • C.B. Das and S.K. Roy, Fuzzy based GA to multi-objective entropy bimatrix game. Opsearch 50 (2013) 125–140. [CrossRef] [Google Scholar]
  • D. Ellsberg, Risk, ambiguity and the Savage axiom. Quat. J. Econ. 75 (1961) 643–669. [CrossRef] [Google Scholar]
  • A. Ferhat, M.S. Radjef, Z-Equilibrium for a Mixed Strategic Multicriteria Game. EURO 25, Vilnius (2012). [Google Scholar]
  • J. Gao, Uncertain bi-matrix game with applications. Fuzzy Optim. Decis. Mak. 12 (2013) 65–78. [CrossRef] [Google Scholar]
  • J.C. Harsanyi, Games with incomplete information played by bayesian players. The basic model. Management Sci. 14 (1967) 317–334. [CrossRef] [Google Scholar]
  • J.C. Harsanyi and S. Reinhard, A General Theory of Equilibrium Selection in Games. MIT Press, Cambridge, MA (1988). [Google Scholar]
  • M.O. Jackson, L.K. Simon, J.M. Swinkels and W.R. Zame, Communication and equilibrium in discontinuous games of incomplete information. Econometrica 70 (2002) 1711–1740. [Google Scholar]
  • P. Klibanoff, Uncertainty, decision and normal form games. Manuscript (1996). [Google Scholar]
  • M. Larbani, Non cooperative fuzzy games in normal form: a survey. Fuzzy Sets Syst. 160 (2009) 3184–3210. [CrossRef] [Google Scholar]
  • M. Larbani and H. Lebbah, A Concept of equilibrium for a game under uncertainty. Euro. J. Oper. Res. 1 (1999) 145–156. [CrossRef] [Google Scholar]
  • X. Li and B. Liu, Hybrid logic and uncertain logic. J. Uncertain Syst. 3 (2009) 83–94. [Google Scholar]
  • B. Liu, Uncertainty Theory, 2nd edition. Springer-Verlag, Berlin (2007). [Google Scholar]
  • B. Liu, Some research problems in uncertainty theory. J. Uncertain Syst. 3 (2009) 3–10. [Google Scholar]
  • B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Springer-Verlag, Berlin (2010). [Google Scholar]
  • B. Liu, Why is there a need for uncertainty theory?. J. Uncertain Syst. 6 (2012) 3–10. [Google Scholar]
  • B. Liu, Uncertainty Theory, 4th edition. Springer-Verlag, Berlin (2015). [Google Scholar]
  • T. Maeda, Characterization of the equilibrium strategy of the bimatrix game with fuzzy payoff. J. Math. Anal. Appl. 251 (2000) 885–896. [Google Scholar]
  • F. Messine, Deterministic global optimization using interval constraint propagation technique. RAIRO-Rech. Oper. 38 (2004) 277–293. [CrossRef] [Google Scholar]
  • J. Ninin, F. Messine and P. Hansen, A reliable affine relaxation method for global optimization. 4OR-Q. J Oper. Res. 13 (2015) 247–277. [CrossRef] [Google Scholar]
  • F. Messine, A deterministic global optimization algorithm for design problems, edited by C. Audet, P. Hansen and G. Savard. In: Chapter in Essays and Surveys in Global Optimization (2005) 267–294. [CrossRef] [Google Scholar]
  • P. Mula, S.K. Roy and D.F. Li, Birough programming approach for solving bi-matrix games with birough payoff elements. J. Intel. Fuzzy Syst. 29 (2015) 863–875. [CrossRef] [Google Scholar]
  • J.F. Nash, Non-cooperative games. Ann. Math. 54 (1951) 286–295. [Google Scholar]
  • R. Nessah, M. Larbani and T. Tazdat, Coalitional ZP-Equilibrium in games and its Existence. Int. Game Theory Rev. 17 (2015). [CrossRef] [Google Scholar]
  • I. Nishizaki and M. Sakawa, Equilibrium solutions in multiobjective bi-matrix games with fuzzy payoffs and fuzzy goals. Fuzzy Sets Syst. 111 (2000) 99–116. [CrossRef] [Google Scholar]
  • Z. Peng and K. Iwamura, A sufficient and necessary condition of uncertainty distribution. J. Interdisciplinary Math. 13 (2010) 277–285. [CrossRef] [Google Scholar]
  • V. Perchet, A note on robust Nash equilibria in games with uncertainties. RAIRO-REch. Oper. 48 (2014) 365–371. [CrossRef] [Google Scholar]
  • S.K. Roy, Fuzzy programming approach to two-person multicriteria bimatrix games. J. Fuzzy Math. 15 (2007) 141–153. [Google Scholar]
  • S.K. Roy and P. Mula, Bi-matrix game in bifuzzy environment. J. Uncertainty Anal. App. 1 (2013) 1–11. [CrossRef] [Google Scholar]
  • S.K. Roy and P. Mula, Rough set approach to bi-matrix game. Int. J. Oper. Res. 23 (2015) 229–244. [CrossRef] [Google Scholar]
  • N. Solmeyer and R. Balu, Characterizing the Nash equilibria of three-player Bayesian quantum games. SPIE, forthcoming (2017). [Google Scholar]
  • G. Shafer, A mathematical theory of evidence. Princeton University Press, Princeton, NJ (1976). [Google Scholar]
  • Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, New York, NY (2009). [Google Scholar]
  • S. Singh, V. Soni and M. Wellman, Computing approximate Bayes-Nash equilibria in treegames of incomplete information. In: EC: Proceedings of the ACM Conference on Electronic Commerce (2004) 81–90. [Google Scholar]
  • R.E. Steuer, Multiple Criteria Optimization: Theory, Computation and Application. John Wiley and Sons, New York, NY (1986). [Google Scholar]
  • X. Luo and W. Ma, Games with Ambiguous Payoffs and played by Ambiguity and regret minimising players, edited by M. Thielscher and D. Zhang. In: Advances in Artificial Intelligence. AI 2012. Lecture notes in Computer Science. Springer-Verlag Berlin, Heidelberg 7691 (2012) 409–420. [CrossRef] [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Informa. Control 8 (1965) 338–353. [CrossRef] [MathSciNet] [Google Scholar]
  • V.I. Zhukovskii, Some problems of non-antagonistic differential games, edited by P. Kenderov. In: Matematiceskie metody versus issledovanii operacij [Mathematical Methods in Operations Research]. Bulgarian Academy of Sciences, Sofia (1985) 103–195. [Google Scholar]
  • V.I. Zhukovskii and A.A. Tchikry, Linear-quadratic Differential Games. Naoukova Doumka, Kiev (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.