Free Access
Issue
RAIRO-Oper. Res.
Volume 54, Number 2, March-April 2020
Page(s) 471 - 488
DOI https://doi.org/10.1051/ro/2019008
Published online 02 March 2020
  • A. Aissani, S. Taleb, T. Kernane, G. Saidi and D. Hamadouche, An M/G/1 retrial queue with working vacation. In: Proceedings of the International Conference on Systems Science 2013, edited by J. Swiatek. Springer International Publishing, Poland (2013) 443–452. [Google Scholar]
  • B.K. Kumarand D. Arivudainambi, The M/G/1 retrial queue with Bernoulli schedules and general retrial times. Comput. Math. Appl. 43 (2002) 15–30. [Google Scholar]
  • B.K. Kumar, D. Arivudainambi and A. Vijayakumar, On the MX/G/1 retrial queue with Bernoulli schedules and general retrial times. Asia Pac. J. Oper. Res. 19 (2002) 177–194. [Google Scholar]
  • D. Arivudainambi, P. Godhandaraman and P. Rajadurai, Performance analysis of a single server retrial queue with working vacation. OPSEARCH 51 (2014) 434–462. [CrossRef] [Google Scholar]
  • G. Choudhury and J. Ke, An unreliable retrial queue with delaying repair and general retrial times under Bernoulli vacation schedule. Appl. Math. Comput. 230 (2014) 436–450. [Google Scholar]
  • G.I. Falin, An M/G/1 retrial queue with an unreliable server and general repair times. Perform. Eval. 67 (2010) 569–582. [CrossRef] [Google Scholar]
  • G.I. Falin and J.G.C. Templeton, Retrial Queues. Chapman & Hall, London (1997). [CrossRef] [Google Scholar]
  • J. Keilson and L.D. Servi, Oscillating random walk models for GI/G/1 vacation system with Bernoulli schedules. J. Appl. Prob. 23 (1986) 790–802. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Li and N. Tian, Performance analysis of a GI/M/1 queue with single working vacation. Appl. Math. Comput. 217 (2011) 4960–4971. [Google Scholar]
  • J.R. Artalejo, Accessible bibliography on retrial queues: Progress in 2000–2009. Math. Comput. Model. 51 (2010) 1071–1081. [Google Scholar]
  • J.R. Artalejo and A. Corral, Retrial Queueing Systems: A Computational Approach. Springer, Berlin (2008). [CrossRef] [Google Scholar]
  • J. Wang, Discrte-time Geo/G/1 retrial queues with general retrial time and Bernoulli vacation. J. Syst. Sci. Complex. 25 (2012) 504–513. [Google Scholar]
  • J. Wu and Z. Lian, A single-server retrial G-queue with priority and unreliable server under Bernoulli vacation schedule. Comput. Ind. Eng. 64 (2013) 84–93. [Google Scholar]
  • K. Chae, D. Lim and W. Yang, The GI/M/1 queue and the GI/Geo/1 queue both with single working vacation. Perform. Eval. 66 (2009) 356–367. [CrossRef] [Google Scholar]
  • L.D. Servi and S.G. Finn, M/M/1 queue with working vacations (M/M/1/WV). Perform. Eval. 50 (2002) 41–52. [CrossRef] [Google Scholar]
  • L. Tao, Z. Liu and Z. Wang, M/M/1 retrial queue with collisions and working vacation interruption under N-policy. RAIRO: OR 46 (2012) 355–371. [CrossRef] [Google Scholar]
  • M.F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker, New York (1989). [Google Scholar]
  • M. Zhang and Z. Hou, M/G/1 queue with single working vacation, J. Appl. Math. Comput. 39 (2012) 221–234. [Google Scholar]
  • N. Selvaraju and C. Goswami, Impatient customers in an M/M/1 queue with single and multiple working vacations. Comput. Ind. Eng. 65 (2013) 207–215. [Google Scholar]
  • N. Tian, X. Zhao and K. Wang, The M/M/1 queue with single working vacation. Int. J. Infor. Manag. Sci. 19 (2008) 621–634. [Google Scholar]
  • R.B. Cooper, Introduction to Queueing Theory. North-Holland, New York (1981). [Google Scholar]
  • R.W. Wolff, Poisson arrivals see time averages. Oper. Res. 30 (1982) 223–231. [Google Scholar]
  • S. Gao, J. Wang, Discrete-time GeoX/G/1 retrial queue with general retrial times, working vacations and vacation interruption. Qual. Technol. Quant. M. 10 (2013) 493–510. [Google Scholar]
  • S. Gao, J. Wang and W. Li, An M/G/1 retrial queue with general retrial times, working vacations and vacation interruption. Asia Pac. J. Oper. Res. 31 (2014) 25. [Google Scholar]
  • S. Gao, Z. Liu, An M/G/1 queue with single working vacation and vacation interruption under Bernoulli schedule. Appl. Math. Model. 37 (2013) 1564–1579. [Google Scholar]
  • S. Upadhyaya, Working vacation policy for a discrete-time GeoX/Geo/1 retrial queue. OPSEARCH 52 (2015) 650–669. [CrossRef] [Google Scholar]
  • T. Do, M/M/1 retrial queue with working vacations, Acta Inform. 47 (2010) 67–75. [Google Scholar]
  • V. Jailaxmi, R. Arumuganathan and M.S. Kumar, Performance analysis of single server non-Markovian retrial queue with working vacation and constant retrial policy. RAIRO: OR 48 (2014) 381–398. [CrossRef] [Google Scholar]
  • W. Zhou, Analysis of a single-server retrial queue with FCFS orbit and Bernoulli vacation. Appl. Math. Comput. 161 (2005) 353–364. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.