Free Access
RAIRO-Oper. Res.
Volume 54, Number 2, March-April 2020
Page(s) 325 - 339
Published online 27 February 2020
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • M.R. Ghasemi, J. Ignatius and A. Emrouznejad, A bi-objective weighted model for improving the discrimination power in MCDEA. Eur. J. Oper. Res. 233 (2014) 640–650. [Google Scholar]
  • J. Ignatius, M.R. Ghasemi, F. Zhang, A. Emrouznejad and A. Hatami-Marbini, Carbon efficiency evaluation: an analytical framework using fuzzy DEA. Eur. J. Oper. Res. 253 (2016) 428–440. [Google Scholar]
  • P. Zhou, B.W. Ang and K.L. Poh, Measuring environmental performance under different environmental DEA technologies. Energy Econ. 30 (2008) 1–14. [Google Scholar]
  • J. Du, L. Liang, Y. Chen, W.D. Cook and J. Zhu, A bargaining game model for measuring performance of two-stage network structures. Eur. J. Oper. Res. 210 (2011) 390–397. [Google Scholar]
  • G. Bi, Y. Luo, J. Ding and L. Liang, Environmental performance analysis of Chinese industry from a slacks-based perspective. Ann. Oper. Res. 228 (2012) 65–80. [Google Scholar]
  • L. Chen and G. Jia, Environmental efficiency analysis of China’s regional industry: a data envelopment analysis (DEA) based approach. J. Cleaner Prod. 142 (2017) 846–853. [CrossRef] [Google Scholar]
  • J. Du, L. Liang, Y. Chen and G.B. Bi, DEA-based production planning. Omega 38 (2010) 105–112. [Google Scholar]
  • F. Hosseinzadeh Lotfi and S. Moghtaderi, DEA-based production planning changes in general situation. Appl. Math. Sci. 71 (2010) 3523–3536. [Google Scholar]
  • A. Amirteimoori and S. Kordrostami, Production planning: a DEA-based approach. Int. J. Adv. Manuf. Technol. 56 (2011) 369–376. [Google Scholar]
  • A. Amirteimoori and S. Kordrostami, Production planning in data envelopment analysis. Int. J. Prod. Econ. 140 (2012) 212–218. [Google Scholar]
  • G.E. Battese and D.S.P. Rao, Technology gap, efficiency, and a stochastic metafrontier function. Int. J. Bus. Econ. 2 (2002) 87–93. [Google Scholar]
  • G.E. Battese, D.S.P. Rao and C.J. O’Donnell, A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Productivity Anal. 21 (2004) 91–103. [CrossRef] [Google Scholar]
  • C.J. O’Donnell, D.S.P. Rao and G.E. Battese, Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empirical Econ. 34 (2008) 231–255. [CrossRef] [Google Scholar]
  • Y. Zhang, H. Zhang, R. Zhang, Z. Zeng and Z. Wang, DEA-based production planning considering influencing factors. J. Oper. Res. Soc. 66 (2015) 1878–1886. [Google Scholar]
  • P. Zhou, B. Ang and K. Poh, A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 189 (2008) 1–18. [Google Scholar]
  • R. Färe, S. Grosskopf, C.A.K. Lovell and C. Pasurka, Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Rev. Econ. Stat. 71 (1989) 90–98. [Google Scholar]
  • H. Dyckhoff and K. Allen, Measuring ecological efficiency with data envelopment analysis (DEA). Eur. J. Oper. Res. 132 (2001) 312–325. [Google Scholar]
  • L.M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 42 (2002) 16–20. [Google Scholar]
  • R. Färe, S. Grosskopf and C.A. Pasurka Jr, Environmental production functions and environmental directional distance functions. Energy 32 (2007) 1055–1066. [CrossRef] [Google Scholar]
  • S. Lozano, E. Gutiérrez and P. Moreno, Network DEA approach to airports performance assessment considering undesirable outputs. Appl. Math. Model. 37 (2013) 1665–1676. [Google Scholar]
  • W. Liu, Z. Zhou, C. Ma, D. Liu and W. Shen, Two-stage DEA models with undesirable input-intermediate-outputs. Omega 56 (2015) 74–87. [Google Scholar]
  • A. Zanella, A.S. Camanho and T.G. Dias, Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis. Eur. J. Oper. Res. 245 (2015) 517–530. [Google Scholar]
  • B. Arabi, S. Munisamy and A. Emrouznejad, A new slacks-based measure of Malmquist-Luenberger index in the presence of undesirable outputs. Omega 51 (2015) 29–37. [Google Scholar]
  • K. Khalili-Damghani and Z. Shahmir, Uncertain network data envelopment analysis with undesirable outputs to evaluate the efficiency of electricity power production and distribution processes. Comput. Ind. Eng. 88 (2015) 131–150. [Google Scholar]
  • T.C. Koopmans, Efficient allocation of resources. Econometric Soc. 19 (1951) 455–465. [CrossRef] [Google Scholar]
  • T. Sueyoshi and Y. Yuan, Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention. Energy Econ. 66 (2017) 154–166. [Google Scholar]
  • X. Pan, Q. Liu and X. Peng, Spatial club convergence of regional energy efficiency in China. Ecol. Indic. 51 (2015) 25–30. [Google Scholar]
  • M. Song, J. Zhang and S. Wang, Review of the network environmental efficiencies of listed petroleum enterprises in China. Renew. Sustainable Energy Rev. 43 (2015) 65–71. [CrossRef] [Google Scholar]
  • S. You and H. Yan, A new approach in modelling undesirable output in DEA model. J. Oper. Res. Soc. 62 (2011) 2146–2156. [Google Scholar]
  • H. Yang and M. Pollitt, The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: environmental performance of Chinese coal-fired power plants. Energy Policy. 38 (2010) 4440–4444. [Google Scholar]
  • J. Wu, Q. Zhu and J. Chu, Two-stage network structures with undesirable intermediate outputs reused: a DEA based approach. Comput. Econ. 46 (2015) 455–477. [CrossRef] [Google Scholar]
  • A. Hailu and T.S. Veeman, Non-parametric productivity analysis with undesirable outputs: an application to Canadian pulp and paper industry. Am. J. Agric. Econ. 83 (2001) 605–616. [Google Scholar]
  • T. Ding, Y. Chen, H. Wu and Y. Wei, Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach. Ann. Oper. Res. 268 (2017) 497–511. [Google Scholar]
  • S. Lozano and G. Villa, Centralized resource allocation using data envelopment analysis. J. Productivity Anal. 22 (2004) 143–161. [CrossRef] [Google Scholar]
  • C. Mar-Molinero, D. Prior, M.M. Segovia and F. Portillo, On centralized resource utilization and its reallocation by using DEA. Ann. Oper. Res. 221 (2014) 273–283. [Google Scholar]
  • L. Fang and H. Li, Centralized resource allocation based on the cost–revenue analysis. Comput. Ind. Eng. 85 (2015) 395–401. [Google Scholar]
  • Z. Miao, Y. Geng and J. Sheng, Efficient allocation of # emissions in China: a zero sum gains data envelopment model. J. Cleaner Prod. 112 (2016) 4144–4150. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.