Free Access
RAIRO-Oper. Res.
Volume 54, Number 2, March-April 2020
Page(s) 597 - 614
Published online 05 March 2020
  • K. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20 (1986) 87–96. [CrossRef] [Google Scholar]
  • K. Bisht and S. Kumar, Intuitionistic fuzzy set-based computational method for financial time series forecasting. Fuzzy Inf. Eng. 10 (2018) 307–323. [CrossRef] [Google Scholar]
  • K. Bisht and S. Kumar, Hesitant fuzzy set based computational method for financial time series forecasting. Granular Comput. 4 (2019) 655–669. [CrossRef] [Google Scholar]
  • T. Bollerslev, Generalized autoregressive conditional heteroscedasticity. J. Econom. 31 (1986) 307–327. [Google Scholar]
  • G. Box and G. Jenkins, Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1976). [Google Scholar]
  • BSE data set.̂SESN. [Google Scholar]
  • Q. Caia, D. Zhanga, B. Wua and S.C.H. Leung, A novel stock forecasting model based on fuzzy time series and genetic algorithm. Proc. Comput. Sci. 18 (2013) 1155–1162. [CrossRef] [Google Scholar]
  • G. Choquet, Theory of capacities. Ann. Inst. Fourier 5 (1954) 131–295. [CrossRef] [Google Scholar]
  • E. Egrioglu, E. Bas, C.H. Aladag and U. Yolcu, Probabilistic fuzzy time series method based on artificial neural network. Am. J. Intell. Syst. 6 (2016) 42–47. [Google Scholar]
  • R.F. Engle, Autoregressive conditional heteroscedasticity with estimator of the varience of United Kingdom inflation. Econometrica 50 (1982) 987–1008. [Google Scholar]
  • S.S. Gangwar and S. Kumar, Probabilistic and intuitionistic fuzzy sets–based method for fuzzy time series forecasting. Cybern. Syst. Int. J. 45 (2014) 349–361. [CrossRef] [Google Scholar]
  • D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA (1989). [Google Scholar]
  • C.W.J. Granger, Forecasting stock market prices: lessons for forecasters. Int. J. Forecasting 8 (1992) 3–13. [CrossRef] [Google Scholar]
  • K.K. Gupta and S. Kumar, A novel high-order fuzzy time series forecasting method based on probabilistic fuzzy sets. Granular Comput. 4 (2019) 699–713. [CrossRef] [Google Scholar]
  • R. Hassan, B. Cohanim, O. de Weck and G. Venter, A comparison of particle swarm optimization and the genetic algorithm. In: Proceedings of the 1st AIAA Multidisciplinary Design Optimization Specialist Conference (2005) 18–21. [Google Scholar]
  • K. Hurang and H.K. Yu, The application of neural networks to forecast fuzzy time series. Phys. A: Stat. Mech. Appl. 363 (2006) 481–491. [CrossRef] [Google Scholar]
  • B.P. Joshi and S. Kumar, Intuitionistic fuzzy sets based method for fuzzy time series forecasting. Cybern. Syst. Int. J. 43 (2012) 34–47. [CrossRef] [Google Scholar]
  • S. Kumar and S.S. Gangwar, Intuitionistic fuzzy time series: an approach for handling non-determinism in time series forecasting. IEEE Trans. Fuzzy Syst. 24 (2016) 1270–1281. [Google Scholar]
  • S. Lahmiri, Wavelet low- and high-frequency components as features for predicting stock prices with backpropagation neural networks. J. King Saud Univ. – Comput. Inf. Sci. 26 (2014) 218–227. [Google Scholar]
  • S. Lahmiri, Intraday stock price forecasting based on variational mode decomposition. J. Comput. Sci. 12 (2016) 23–27. [Google Scholar]
  • S. Lahmiri, A variational mode decompoisition approach for analysis and forecasting of economic and financial time series. Expert Syst.: App. Int. J. 55 (2016) 268–273. [CrossRef] [Google Scholar]
  • S. Lahmiri, A technical analysis information fusion approach for stock price analysis and modeling. Fluct. Noise Lett. 17 (2018) 1850007. [CrossRef] [Google Scholar]
  • S. Lahmiri, Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression. Appl. Math. Comput. 320 (2018) 444–451. [Google Scholar]
  • S. Lahmiri and S. Bekiros, Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos Solitons Fractals 118 (2019) 35–40. [Google Scholar]
  • S. Lahmiri and M. Boukadoum, Intelligent ensemble forecasting system of stock market fluctuations based on symetric and asymetric wavelet functions. Fluct. Noise Lett. 14 (2015) 1550033. [CrossRef] [Google Scholar]
  • W. Leigh, R. Purvis and J.M. Ragusa, Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: a case study in romantic decision support. Decis. Support Syst. 32 (2002) 361–377. [Google Scholar]
  • C. Nikolopoulos and P. Fellrath, A hybrid expert system for investment advising. Expert Syst. 11 (1994) 245–250. [CrossRef] [Google Scholar]
  • NYSE data set.̂YA+Historical+Prices. [Google Scholar]
  • P.F. Pai and C.S. Lin, A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 33 (2005) 497–505. [Google Scholar]
  • S.S. Pal and S. Kar, Time series forecasting using fuzzy transformation and neural network with back propagation learning. J. Intell. Fuzzy Syst. 33 (2017) 467–477. [CrossRef] [Google Scholar]
  • S.S. Pal and S. Kar, Fuzzy time series model for unequal interval length using genetic algorithm. Inf. Technol. Appl. Math. Adv. Intell. Syst. Comput. 699 (2018) 205–216. [Google Scholar]
  • S.S. Pal and S. Kar, A hybridized forecasting method based on weight adjustment of neural network using generalized type-2 fuzzy set. Int. J. Fuzzy Syst. 21 (2019) 308–320. [CrossRef] [Google Scholar]
  • S.S. Pal and S. Kar, Time series forecasting for stock market prediction through data discretization and rule generation by rough set theory. Math. Comput. Simul. 162 (2019) 18–30. [Google Scholar]
  • M. Sugeno, Theory of fuzzy integrals and its applications. Ph.D. thesis Tokyo Institute of Technology (1974). [Google Scholar]
  • TAIEX data set. Available at:̂WII+Historical+Prices. [Google Scholar]
  • H.J. Teoh, T.L. Chen, C.H. Cheng and H.-H. Chu, A hybrid multi-order fuzzy time series for forecasting stock markets. Expert Syst. App. 36 (2009) 7888–7897. [CrossRef] [Google Scholar]
  • Z. Wang, K.S. Leung, M.L. Wong, J. Fang and K. Xu, Nonlinear non-negative multiregressions based on Choquet integrals. Int. J. Approximate Reasoning 25 (2000) 71–87. [CrossRef] [Google Scholar]
  • Y. Wang, Y. Lei, X. Fan and Y. Wang, Intuitionistic fuzzy time series forecasting model based on intuitionistic fuzzy reasoning. Math. Prob. Eng. 2016 (2016) 5035160. [Google Scholar]
  • Z. Xu, Choquet integrals of weighted intuitionistic fuzzy information. Inf. Sci. 180 (2010) 726–736. [Google Scholar]
  • R. Yang, Z. Wang, P.A. Heng and K.S. Leung, Fuzzy numbers and fuzzification of the Choquet integral. Fuzzy Sets Syst. 15 (2005) 95–113. [CrossRef] [Google Scholar]
  • R. Yang, Z. Wang, P.A. Heng and K.-S. Leung, Fuzzified Choquet integral with a fuzzy-valued integrand and its application on temperature prediction. IEEE Trans. Syst. Man Cybern. – Part B: Cybern. 38 (2008) 367–380. [CrossRef] [Google Scholar]
  • U. Yolcu, E. Bas and E. Egrioglu, A new fuzzy inference system for time series forecasting and obtaining the probabilistic forecasts via subsampling block bootstrap. J. Intell. Fuzzy Syst. 35 (2018) 2349–2358. [CrossRef] [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inform. Control 8 (1965) 338–353. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.