Free Access
Issue
RAIRO-Oper. Res.
Volume 54, Number 2, March-April 2020
Page(s) 351 - 367
DOI https://doi.org/10.1051/ro/2018104
Published online 27 February 2020
  • C.-J. Chang, J.-C. Ke and H.-I. Huang, The optimal management of a queueing system with controlling arrivals. J. Chin. Inst. Ind. Eng. 28 (2011) 226–236. [Google Scholar]
  • C.-J. Chang, F.-M. Chang and J.-C. Ke, Optimization of machine repair system with controlling arrival and switching failure. J. Test. Eval. 42 (2014) 1278–1287. [Google Scholar]
  • C.-J. Chang, F.-M. Chang and J.-C. Ke, Economic application in a Bernoulli #-policy queueing system with server breakdown. Int. J. Prod. Res. 52 (2014) 743–756. [Google Scholar]
  • C.-J. Chang and J.-C. Ke, Randomized controlling arrival for a queueing system with subject to server breakdowns. Optimization 64 (2015) 941–955. [Google Scholar]
  • E.A. Feinberg and D.J. Kim, Bicriterion optimization of an # queue with a removable server. Probab. Eng. Inf. Sci. 10 (1996) 57–73. [Google Scholar]
  • V. Goswami, Relationship between randomized #-policy and randomized #-policy in discrete-time queues. OPSEARCH 53 (2016) 131–150. [CrossRef] [Google Scholar]
  • S.M. Gupta, Interrelationship between controlling arrival and service in queueing systems. Comput. Oper. Res. 22 (1995) 1005–1014. [Google Scholar]
  • H.I. Huang, P.C. Hsu and J.C. Ke, Controlling arrival and service of a two-removable-server system using genetic algorithm. Expert Syst. Appl. 38 (2011) 10054–10059. [Google Scholar]
  • M. Jain and S.S. Sanga, Control F-policy for fault tolerance machining system with general retrial attempts. Nat. Acad. Sci. Lett. 40 (2017) 359–364. [CrossRef] [Google Scholar]
  • M. Jain, G.C. Sharma and R. Sharma, Optimal control of (#, # policy for unreliable server queue with multi-optional phase repair and start-up. Int. J. Math. Oper. Res. 4 (2012) 152–174. [CrossRef] [Google Scholar]
  • M. Jain, C. Shekhar and S. Shukla, Machine repair problem with an unreliable server and controlled arrival of failed machines. OPSEARCH 51 (2014) 416–433. [CrossRef] [Google Scholar]
  • D.-J. Kim and S.-A. Moon, Randomized control of T-policy for an # system. Comput. Ind. Eng. 51 (2006) 684–692. [Google Scholar]
  • C.-C. Kuo, K.-H. Wang and W.L. Pearn, The interrelationship between #-policy # and #-policy # queues with startup time. Qual. Technol. Quant. Manage. 8 (2011) 237–251. [CrossRef] [Google Scholar]
  • M. Nidhi and V. Goswami, A randomized #-policy Queueing method to prolong lifetime of wireless sensor networks. Springer, New Delhi (2016) 347–357. [Google Scholar]
  • W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes: The Art of Scientific Computing (3rd ed.). Cambridge University Press, New York (2007). [Google Scholar]
  • K.-H. Wang, C.-C. Kuo and W.L. Pearn, Optimal control of an # queueing system with combined # policy and startup time. J. Optim. Theory Appl. 135 (2007) 285–299. [Google Scholar]
  • K.-H. Wang, C.-C. Kuo and W.L. Pearn, A recursive method for the #-policy # queueing system with an exponential startup time. Appl. Math. Model. 32 (2008) 958–970. [Google Scholar]
  • K.-H. Wang and D.-Y. Yang, Controlling arrivals for a queueing system with an unreliable server: Newton-Quasi method. Appl. Math. Comput. 213 (2009) 92–101. [Google Scholar]
  • K.-H. Wang, D.-Y. Yang and W.L. Pearn, Comparison of two randomized policy # queues with second optional service, server breakdown and startup. J. Comput. Appl. Math. 234 (2010) 812–824. [Google Scholar]
  • K.-H. Wang, D.-Y. Yang and W.L. Pearn, Comparative analysis of a randomized #-policy queue: an improved maximum entropy method. Expert Syst. Appl. 38 (2011) 9461–9471. [Google Scholar]
  • K.-H. Wang, D.-Y. Yang and W.L. Pearn, Analytical method for accuracy analysis of the randomized #-policy queue. Int. J. Innovative Comput. Inf. Control 8 (2012) 1717–1730. [Google Scholar]
  • D.-Y. Yang and P.-K. Chang, A parametric programming solution to the #-policy queue with fuzzy parameters. Int. J. Syst. Sci. 46 (2015) 590–598. [Google Scholar]
  • D.-Y. Yang and J.-C. Ke, Cost optimization of a repairable # queue with a randomized policy and single vacation. Appl. Math. Model. 38 (2014) 5113–5125. [Google Scholar]
  • D.-Y. Yang and K.-H. Wang, Interrelationship between randomized #-policy and randomized #-policy queues. J. Ind. Prod. Eng. 30 (2013) 30–43. [Google Scholar]
  • D.-Y. Yang, K.-H. Wang and W.L. Pearn, Optimization on #-policy for an unreliable queue with second optional service and start-up. J. Chin. Inst. Ind. Eng. 28 (2011) 411–424. [Google Scholar]
  • D.-Y. Yang, K.-H. Wang, J.-C. Ke and W.L. Pearn, Optimal randomized control policy of an unreliable server system with second optional service and startup. Eng. Comput. 25 (2008) 783–800. [Google Scholar]
  • D.-Y. Yang, K.-H. Wang and C.-H. Wu, Optimization and sensitivity analysis of controlling arrivals in the queueing system with single working vacation. J. Comput. Appl. Math. 234 (2010) 545–556. [Google Scholar]
  • D.-Y. Yang and N.-C. Yang, Performance and cost analysis of a finite capacity queue with two heterogeneous servers under F-policy. Int. J. Serv. Oper. Inf. 9 (2018) 101–115. [Google Scholar]
  • C. Yeh, Y.-T. Lee, C.-J. Chang and F.-M. Chang, Analysis of a two-phase queue system with #, #-policy. Qual. Technol. Quant. Manage. 14 (2017) 178–194. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.