Free Access
Issue
RAIRO-Oper. Res.
Volume 54, Number 2, March-April 2020
Page(s) 369 - 391
DOI https://doi.org/10.1051/ro/2018107
Published online 27 February 2020
  • A.Z. Afrouzy, S.H. Nasseri, I. Mahdavi and M.M. Paydar, A fuzzy stochastic multi-objective optimization model to configure a supply chain considering new product development. Appl. Math. Model. 40 (2016) 7545–7570. [Google Scholar]
  • F. Altiparmak, M. Gen, L. Lin and I. Karaoglan, A steady-state genetic algorithm for multi-product supply chain network design. Comput. Ind. Eng. 56 (2009) 521–537. [Google Scholar]
  • M. Amini and H. Li, Supply chain configuration for diffusion of new products: an integrated optimization approach. Omega 39 (2011) 313–322. [Google Scholar]
  • S. Anderson, “Sanity check”. Destination CRM, Viewpoint, available at: www.destinationcrm.com (2006). [Google Scholar]
  • T. Aouam and N. Brahimi, Integrated production planning and order acceptance under uncertainty: A robust optimization approach. Eur. J. Oper. Res. 228 (2013) 504–515. [Google Scholar]
  • A. Ben-Tal and A. Nemirovski, Robust convex optimization. Math. Oper. Res. 23 (1998) 769–805. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Bertsimas and M. Sim, Robust discrete optimization and network flows. Math. Program. 98 (2003) 49–71. [Google Scholar]
  • D. Bertsimas and M. Sim, The price of robustness. Oper. Res. 52 (2004) 35–53. [Google Scholar]
  • C. Billington, H.L. Lee and C.S. Tang, Product rollover: process, strategies and opportunities. Sloan Manage. Rev. 39 (1998) 23–30. [Google Scholar]
  • C.T. Chang, Multi-choice goal programming. Omega 35 (2007) 389–96. [Google Scholar]
  • C.T. Chang, Revised multi-choice goal programming. Appl. Math. Model. 32 (2008) 2587–2595. [Google Scholar]
  • C.T. Chang, Multi-choice goal programming with utility functions. Eur. J. Oper. Res. 215 (2011) 439–445. [Google Scholar]
  • A. Charnes and W.W. Cooper, Management Models and Industrial Applications of Linear Programming. Wiley, New York (1961). [Google Scholar]
  • L. El Ghaoui and H. Lebret, Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18 (1997) 1035–1064. [Google Scholar]
  • C. Forza, F. Salvador and M. Rungtusanatham, Coordinating product design, process design, and supply chain design decisions: Part B. Coordinating approaches, tradeoffs, and future research directions. J. Oper. Manage. 23 (2005) 319–324. [CrossRef] [Google Scholar]
  • D. Francas and S. Minner, Manufacturing network configuration in supply chains with product recovery. Omega 37 (2009) 757–769. [Google Scholar]
  • A.C. Garavelli, Flexibility configurations for the supply chain management. Int. J. Prod. Econ. 85 (2003) 141–153. [Google Scholar]
  • N. Gholamian, I. Mahdavi, R. Tavakkoli-Moghaddam and N. Mahdavi-Amiri, Comprehensive fuzzy multi-objective multi-product multi-site aggregate production planning decisions in a supply chain under uncertainty. Appl. Soft Comput. 37 (2015) 585–607. [Google Scholar]
  • O. Jadidi, S. Cavalieri and S. Zolfaghari, An improved multi-choice goal programming approach for supplier selection problems. Appl. Math. Model. 39 (2015) 4213–4222. [Google Scholar]
  • M. Jafarian and M. Bashiri, Supply chain dynamic configuration as a result of new product development. Appl. Math. Model. 38 (2014) 1133–1146. [Google Scholar]
  • J. Jouzdani, M. Fathian, A. Makui and M. Heydari, Robust design and planning for a multi-mode multi-product supply network: A dairy industry case study. Oper. Res. (2018) 1–30. https://doi.org/10.1007/s12351-018-0395-0. [Google Scholar]
  • B. Karakostas, D. Kardaras and E. Papathanassiou, The state of CRM adoption by the financial services in the UK: An empirical investigation. Inf. Manage. 42 (2005) 853–863. [Google Scholar]
  • J. Kettunen, Y. Grushka-Cockayne, Z. Degraeve and B. De Reyck, New product development flexibility in a competitive environment. Eur. J. Oper. Res. 244 (2015) 892–904. [Google Scholar]
  • M.S. Kisomi, M. Solimanpur and A. Doniavi, An integrated supply chain configuration model and procurement management under uncertainty. A set-based robust optimization methodology. Appl. Math. Model. 40 (2016) 7928–7947. [Google Scholar]
  • E. Koyuncu and R. Erol, PSO based approach for scheduling NPD projects including overlapping process. Comput. Ind. Eng. 85 (2015) 316–327. [Google Scholar]
  • H. Li and K. Womer, Modeling the supply chain configuration problem with resource constraints. Int. J. Project Manage. 26 (2008) 646–654. [CrossRef] [Google Scholar]
  • J.J. Liou, A novel decision rules approach for customer relationship management of the airline market. Expert Syst. Appl. 36 (2009) 4374–4381. [Google Scholar]
  • S.M.J. Mirzapour Al-E-Hashem, H. Malekly and M.B. Aryanezhad, A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. Int. J. Prod. Econ. 134 (2011) 28–42. [Google Scholar]
  • J.M. Mulvey, R.J. Vanderbei and S.A. Zenios, Robust optimization of large-scale systems. Oper. Res. 43 (1995) 264–281. [Google Scholar]
  • P.K. Naraharisetti and I.A. Karimi, Supply chain redesign and new process introduction in multipurpose plants. Chem. Eng. Sci. 65 (2010) 2596–2607. [Google Scholar]
  • B. Nepal, L. Monplaisir and O. Famuyiwa, A multi-objective supply chain configuration model for new products. Int. J. Prod. Res. 49 (2011) 7107–7134. [Google Scholar]
  • S. Oh, K. Ryu and M. Jung, Reconfiguration framework of a supply network based on flexibility strategies. Comput. Ind. Eng. 65 (2013) 156–165. [Google Scholar]
  • M.M. Paydar, V. Babaveisi and A.S. Safaei, An engine oil closed-loop supply chain design considering collection risk. Comput. Chem. Eng. 104 (2017) 38–55. [Google Scholar]
  • K.J. Petersen, R.B. Handfield and G.L. Ragatz, Supplier integration into new product development: coordinating product, process and supply chain design. J. Oper. Manage. 23 (2005) 371–388. [CrossRef] [Google Scholar]
  • I.J. Petrick and A.E. Echols, Technology road mapping in review: A tool for making sustainable new product development decisions”. Technol. Forecast. Soc. Change 71 (2004) 81–100. [Google Scholar]
  • M.S. Pishvaee, M. Rabbani and S.A. Torabi, A robust optimization approach to closed-loop supply chain network design under uncertainty. Appl. Math. Model. 35 (2011) 637–649. [Google Scholar]
  • N.C. Romano Jr and J. Fjermestad, Electronic commerce customer relationship management: A research agenda. Inf. Technol. Manage. 4 (2003) 233–258. [CrossRef] [Google Scholar]
  • A.L. Soyster, Technical note–convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21 (1973) 1154–1157. [Google Scholar]
  • M. Tracey and R. Neuhaus, Purchasing’s role in global new product-process development projects. J. Purchas. Supply Manage. 19 (2013) 98–105. [CrossRef] [Google Scholar]
  • A. Thiele, A robust optimization approach to supply chains and revenue management. (Doctoral dissertation, Massachusetts Institute of Technology) (2004). [Google Scholar]
  • E. Van Kleef, H.C. Van Trijp and P. Luning, Consumer research in the early stages of new product development: a critical review of methods and techniques. Food Qual. Prefer. 16 (2005) 181–201. [Google Scholar]
  • J. Wang and Y.F. Shu, A possibilistic decision model for new product supply chain design. Eur. J. Oper. Res. 177 (2007) 1044–1061. [Google Scholar]
  • S. Zokaee, A. Jabbarzadeh, B. Fahimnia and S.J. Sadjadi, Robust supply chain network design: An optimization model with real world application. Ann. Oper. Res. 257 (2014) 15–44. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.