Free Access
RAIRO-Oper. Res.
Volume 54, Number 2, March-April 2020
Page(s) 307 - 323
Published online 27 February 2020
  • A. Agnetis, G. de Pascale and D. Pacciarelli, A Lagrangian approach to single-machine scheduling problems with two competing agents. J. Scheduling 12 (2009) 401–415. [CrossRef] [Google Scholar]
  • F. Ahmadizar and J. Eteghadipour, Single-machine earliness-tardiness scheduling with two competing agents and idle time. Eng. Optim. 49 (2017) 499–512. [CrossRef] [Google Scholar]
  • K.R. Baker and J.C. Smith, A multiple-criterion model for machine scheduling. J. Scheduling 6 (2003) 7–16. [CrossRef] [Google Scholar]
  • S. Bouzidi-Hassini, F.B.S. Tayeb, F. Marmier and M. Rabahi, Considering human resource constraints for real joint production and maintenance schedules. Comput. Ind. Eng. 90 (2015) 197–211. [Google Scholar]
  • X.L. Cao, W.H. Wu, W.H. Wu and C.C. Wu, Some two-agent single-machine scheduling problems to minimize minmax and minsum of completion times. Oper. Res. 18 (2018) 293–314. [Google Scholar]
  • W.J. Chen, Scheduling of jobs and maintenance in a textile company. Int. J. Adv. Manuf. Technol. 31 (2007) 737–742. [Google Scholar]
  • W.J. Chen, Scheduling with dependent setups and maintenance in a textile company. Comput. Ind. Eng. 57 (2009) 867–873. [Google Scholar]
  • T.C.E. Cheng, C.Y. Liu, W.C. Lee and M. Ji, Two-agent single-machine scheduling to minimize the weighted sum of the agents’ objective functions. Comput. Ind. Eng. 78 (2014) 66–73. [Google Scholar]
  • M.B. Cheng, P.R. Tadikamalla, J. Shang and B.X. Zhang, Two-machine flow shop scheduling with deteriorating jobs: minimizing the weighted sum of makespan and total completion time. J. Oper. Res. Soc. 66 (2015) 709–719. [Google Scholar]
  • S.R. Cheng, Y.Q. Yin, C.H. Wen, W.C. Lin, C.C. Wu and J. Liu, A two-machine flowshop scheduling problem with precedence constraint on two jobs. Soft Comput. 21 (2017) 2091–2103. [Google Scholar]
  • S. Gawiejnowicz, W.C. Lee, C.L. Lin and C.C. Wu, Single-machine scheduling of proportionally deteriorating jobs by two agents. J. Oper. Res. Soc. 62 (2011) 1983–1991. [Google Scholar]
  • D.E. Goldberg and R. Lingle, Alleles, loci and the traveling salesman problem. In: Proceedings of an International Conference on Genetic Algorithms and Their Application, Hillsdale, NJ, USA (1985). [Google Scholar]
  • L. Grigoriu and D. Briskorn, Scheduling jobs and maintenance activities subject to job-dependent machine deteriorations. J. Scheduling 20 (2017) 183–197. [CrossRef] [Google Scholar]
  • M.Z. Gu, J.W. Gu and X.W. Lu, An algorithm for multi-agent scheduling to minimize the makespan on m parallel machines. J. Scheduling 21 (2018) 483–492. [CrossRef] [Google Scholar]
  • M. Haouari and M. Kharbeche, An assignment-based lower bound for a class of two-machine flow shop problems. Comput. Oper. Res. 40 (2013) 1693–1699. [Google Scholar]
  • R. Jamshidi and M.M.S. Esfahani, Reliability-based maintenance and job scheduling for identical parallel machines. Int. J. Prod. Res. 53 (2015) 1216–1227. [Google Scholar]
  • B. Jeong and Y.D. Kim, Minimizing total tardiness in a two-machine re-entrant flowshop with sequence-dependent setup times. Comput. Oper. Res. 47 (2014) 72–80. [Google Scholar]
  • V. Kachitvichyanukul, Comparison of three evolutionary algorithms: GA, PSO, and DE. Ind. Eng. Manage. Syst. 11 (2012) 215–223. [Google Scholar]
  • Y.D. Kim, A new branch and bound algorithm for minimizing mean tardiness in 2-machine flowshops. Comput. Oper. Res. 20 (1993) 391–401. [Google Scholar]
  • J.Y. Lee and Y.D. Kim, A branch and bound algorithm to minimize total tardiness of jobs in a two identical-parallel-machine scheduling problem with a machine availability constraint. J. Oper. Res. Soc. 66 (2015) 1542–1554. [Google Scholar]
  • W.C. Lee and J.Y. Wang, A scheduling problem with three competing agents. Comput. Oper. Res. 51 (2014) 208–217. [Google Scholar]
  • W.C. Lee and J.Y. Wang, A three-agent scheduling problem for minimizing the makespan on a single machine. Comput. Ind. Eng. 106 (2017) 147–160. [Google Scholar]
  • W.C. Lee and C.C. Wu, Minimizing the total flow time and the tardiness in a two-machine flow shop. Int. J. Syst. Sci. 32 (2001) 365–373. [Google Scholar]
  • W.C. Lee, S.K. Chen and C.C. Wu, Branch-and-bound and simulated annealing algorithms for a two-agent scheduling problem. Expert Syst. App. 37 (2010) 6594–6601. [CrossRef] [Google Scholar]
  • W.C. Lee, Y.H. Chung and M.C. Hu, Genetic algorithms for a two-agent single-machine problem with release time. Appl. Soft Comput. 12 (2012) 3580–3589. [Google Scholar]
  • W.C. Lee, J.Y. Wang and H.W. Su, Algorithms for single-machine scheduling to minimize the total tardiness with learning effects and two competing agents. Concurrent Eng.-Res. App. 23 (2015) 13–26. [CrossRef] [Google Scholar]
  • W.C. Lee, J.Y. Wang and M.C. Lin, A branch-and-bound algorithm for minimizing the total weighted completion time on parallel identical machines with two competing agents. Knowl.-Based Syst. 105 (2016) 68–82. [CrossRef] [Google Scholar]
  • D.M. Lei, Variable neighborhood search for two-agent flow shop scheduling problem. Comput. Ind. Eng. 80 (2015) 125–131. [Google Scholar]
  • B.M.T. Lin, F.J. Hwang and J.N.D. Gupta, Two-machine flowshop scheduling with three-operation jobs subject to a fixed job sequence. J. Scheduling 20 (2017) 293–302. [CrossRef] [Google Scholar]
  • P. Liu, N. Yi, X.Y. Zhou and H. Gong, Scheduling two agents with sum-of-processing-times-based deterioration on a single machine. Appl. Math. Comput. 219 (2013) 8848–8855. [Google Scholar]
  • M. Liu, S.J. Wang, C.B. Chu and F. Chu, An improved exact algorithm for single-machine scheduling to minimise the number of tardy jobs with periodic maintenance. Int. J. Prod. Res. 54 (2016) 3591–3602. [Google Scholar]
  • E.G. Lopez, M. O’Neill, On the effects of locality in a permutation problem: the Sudoku puzzle. In: IEEE Symposium on Computational Intelligence and Games. Milano, Italy (2009) 80–87. [Google Scholar]
  • S.A. Mansouri and E. Aktas, Minimizing energy consumption and makespan in a two-machine flowshop scheduling problem. J. Oper. Res. Soc. 67 (2016) 1382–1394. [Google Scholar]
  • B. Mor and G. Mosheiov, Minimizing maximum cost on a single machine with two competing agents and job rejection. J. Oper. Res. Soc. 67 (2016) 1524–1531. [Google Scholar]
  • Y.D. Ni and Z.J. Zhao, Two-agent scheduling problem under fuzzy environment. J. Intell. Manuf. 28 (2017) 739–748. [Google Scholar]
  • J.C.H. Pan, J.S. Chen and C.M. Chao, Minimizing tardiness in a two-machine flow-shop. Comput. Oper. Res. 29 (2002) 869–885. [Google Scholar]
  • K. Rustogi and V.A. Strusevich, Single machine scheduling with time-dependent linear deterioration and rate-modifying maintenance. J. Oper. Res. Soc. 66 (2015) 500–515. [Google Scholar]
  • J. Schaller, Note on minimizing total tardiness in a two-machine flowshop. Comput. Oper. Res. 32 (2005) 3273–3281. [Google Scholar]
  • D. Shabtay, O. Dover and M. Kaspi, Single-machine two-agent scheduling involving a just-in-time criterion. Int. J. Prod. Res. 53 (2015) 2590–2604. [Google Scholar]
  • Y.R. Shiau, W.C. Lee, Y.S. Kung and J.Y. Wang, A lower bound for minimizing the total completion time of a three-agent scheduling problem. Inf. Sci. 340 (2016) 305–320. [Google Scholar]
  • J.M.P. Siopa, J.E.S. Garcao and J.M.E. Silva, Component redundancy allocation in optimal cost preventive maintenance scheduling. J. Oper. Res. Soc. 66 (2015) 925–935. [Google Scholar]
  • L.H. Su and H.M. Wang, Minimizing total absolute deviation of job completion times on a single machine with cleaning activities. Comput. Ind. Eng. 103 (2017) 242–249. [Google Scholar]
  • K. Thornblad, A.B. Stromberg, M. Patriksson and T. Almgren, Scheduling optimisation of a real flexible job shop including fixture availability and preventive maintenance. Eur. J. Ind. Eng. 9 (2015) 126–145. [CrossRef] [Google Scholar]
  • M. Torkashvand, B. Naderi and S.A. Hosseini, Modelling and scheduling multi-objective flow shop problems with interfering jobs. Appl. Soft Comput. 54 (2017) 221–228. [Google Scholar]
  • J.Y. Wang, A branch-and-bound algorithm for minimizing the total tardiness of a three-agent scheduling problem considering the overlap effect and environmental protection. IEEE Access 7 (2019) 5106–5123. [Google Scholar]
  • J.Y. Wang, Minimizing the total weighted tardiness of overlapping jobs on parallel machines with a learning effect. J. Oper. Res. Soc. Accepted (2019). [Google Scholar]
  • D.J. Wang, Y.Q. Yin, J.Y. Xu, W.H. Wu, S.R. Cheng and C.C. Wu, Some due date determination scheduling problems with two agents on a single machine. Int. J. Prod. Econ. 168 (2015) 81–90. [Google Scholar]
  • J.Q. Wang, G.Q. Fan, Y.Q. Zhang, C.W. Zhang and J.Y.T. Leung, Two-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizes. Eur. J. Oper. Res. 258 (2017) 478–490. [Google Scholar]
  • D.J. Wang, Y.Q. Yin, W.H. Wu, W.H. Wu, C.C. Wu and P.H. Hsu, A two-agent single-machine scheduling problem to minimize the total cost with release dates. Soft Comput. 21 (2017) 805–816. [Google Scholar]
  • W.H. Wu, Y.Q. Yin, T.C.E. Cheng, W.C. Lin, J.C. Chen, S.Y. Luo and C.C. Wu, A combined approach for two-agent scheduling with sum-of-processing-times-based learning effect. J. Oper. Res. Soc. 68 (2017) 111–120. [Google Scholar]
  • Z.J. Xu and D.H. Xu, Single-machine scheduling with preemptive jobs and workload-dependent maintenance durations. Oper. Res. 15 (2015) 423–436. [Google Scholar]
  • C.N. Yang, B.M.T. Lin, F.J. Hwang and M.C. Wang, Acquisition planning and scheduling of computing resources. Comput. Oper. Res. 76 (2016) 167–182. [Google Scholar]
  • J.F. Ye and H.M. Ma, Multiobjective joint optimization of production scheduling and maintenance planning in the flexible job-shop problem. Math. Probl. Eng. 2015 (2015) 725460. [Google Scholar]
  • Y.Q. Yin, C.C. Wu, W.H. Wu, C.J. Hsu and W.H. Wu, A branch-and-bound procedure for a single-machine earliness scheduling problem with two agents. Appl. Soft Comput. 13 (2013) 1042–1054. [Google Scholar]
  • Y.Q. Yin, D.S. Ye and G.C. Zhang, Single machine batch scheduling to minimize the sum of total flow time and batch delivery cost with an unavailability interval. Inf. Sci. 274 (2014) 310–322. [Google Scholar]
  • Y.Q. Yin, Y. Wang, T.C.E. Cheng, D.J. Wang and C.C. Wu, Two-agent single-machine scheduling to minimize the batch delivery cost. Comput. Ind. Eng. 92 (2016) 16–30. [Google Scholar]
  • A.J. Yu and J. Seif, Minimizing tardiness and maintenance costs in flow shop scheduling by a lower-bound-based GA. Comput. Ind. Eng. 97 (2016) 26–40. [Google Scholar]
  • X.Y. Yu, Y.L. Zhang, D.H. Xu and Y.Q. Yin, Single machine scheduling problem with two synergetic agents and piece-rate maintenance. Appl. Math. Modell. 37 (2013) 1390–1399. [CrossRef] [Google Scholar]
  • F. Zammori, M. Braglia and D. Castellano, Harmony search algorithm for single-machine scheduling problem with planned maintenance. Comput. Ind. Eng. 76 (2014) 333–346. [Google Scholar]
  • X.G. Zhang, Y.Q. Yin and C.C. Wu, Scheduling with non-decreasing deterioration jobs and variable maintenance activities on a single machine. Eng. Optim. 49 (2017) 84–97. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.