Free Access
RAIRO-Oper. Res.
Volume 54, Number 2, March-April 2020
Page(s) 507 - 527
Published online 02 March 2020
  • M.J. Anzanello and F.S. Fogliatto, Learning curve models and applications: literature review and research directions. Int. J. Ind. Ergon. 41 (2011) 573–583. [Google Scholar]
  • L. Argote, Organizational Learning: Creating, Retaining and Transferring Knowledge. Springer Science & Business Media (2012). [Google Scholar]
  • R.G. Askin and J.B. Goldberg, Design and Analysis of Lean Production Systems. John Wiley & Sons (2007). [Google Scholar]
  • A.B. Badiru, Computational survey of univariate and multivariate learning curve models. IEEE Trans. Eng. Manage. 39 (1992) 176–188. [CrossRef] [Google Scholar]
  • D. Biskup, A state-of-the-art review on scheduling with learning effects. Eur. J. Oper. Res. 188 (2008) 315–329. [Google Scholar]
  • J. Carlier, F. Clautiaux and A. Moukrim, New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation. Comput. Oper. Res. 34 (2007) 2223–2250. [Google Scholar]
  • M. Drozdowski, Back to scheduling models. In: Scheduling for Parallel Processing. Springer (2009) 367–377. [CrossRef] [Google Scholar]
  • R.L. Graham, E.L. Lawler, J.K. Lenstra and A.R. Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey. In: Vol. 5 of Annals of Discrete Mathematics. Elsevier (1979) 287–326. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Haouari and M. Jemmali, Tight bounds for the identical parallel machine-scheduling problem: part ii. Int. Trans. Oper. Res. 15 (2008) 19–34. [Google Scholar]
  • X. Huang, M.Z. Wang and P. Ji, Parallel machines scheduling with deteriorating and learning effects. Optim. Lett. 8 (2014) 493–500. [Google Scholar]
  • M. Ji, D. Yao, Q. Yang and T. Cheng, Machine scheduling with DeJong’s learning effect. Comput. Ind. Eng. 80 (2015) 195–200. [Google Scholar]
  • M. Ji, X. Tang, X. Zhang and T.E. Cheng, Machine scheduling with deteriorating jobs and DeJong’s learning effect. Comput. Ind. Eng. 91 (2016) 42–47. [Google Scholar]
  • Y.K. Lin, Scheduling identical jobs on uniform parallel machines under position-based learning effects. Arab. J. Sci. Eng. 39 (2014) 6567–6574. [CrossRef] [Google Scholar]
  • Y.Y. Lu, J. Jin, P. Ji and J.B. Wang, Resource-dependent scheduling with deteriorating jobs and learning effects on unrelated parallel machine. Neural Comput. Appl. 27 (2016) 1993–2000. [Google Scholar]
  • K. Luo, A scheduling model with a more general function of learning effects. Comput. Ind. Eng. 82 (2015) 159–166. [Google Scholar]
  • L.P. Michael, Scheduling: Theory, Algorithms, and Systems. Springer (2018). [Google Scholar]
  • D. Okołowski and S. Gawiejnowicz, Exact and heuristic algorithms for parallel-machine scheduling with DeJong’s learning effect. Comput. Ind. Eng. 59 (2010) 272–279. [Google Scholar]
  • S. Pakzad-Moghaddam, A Lévy flight embedded particle swarm optimization for multi-objective parallel-machine scheduling with learning and adapting considerations. Comput. Ind. Eng. 91 (2016) 109–128. [Google Scholar]
  • M. Rostami, A.E. Pilerood and M.M. Mazdeh, Multi-objective parallel machine scheduling problem with job deterioration and learning effect under fuzzy environment. Comput. Ind. Eng. 85 (2015) 206–215. [Google Scholar]
  • R. Rudek, Scheduling on parallel processors with varying processing times. Comput. Oper. Res. 81 (2017) 90–101. [Google Scholar]
  • D. Shabtay and G. Steiner, A survey of scheduling with controllable processing times. Disc. Appl. Math. 155 (2007) 1643–1666. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Teplitz, The Learning Curve Deskbook: A Reference Guide to Theory, Calculations and Applications. Quorum Books, Westport, CT (1991). [Google Scholar]
  • X.Y. Wang and J.J. Wang, Scheduling deteriorating jobs with a learning effect on unrelated parallel machines. Appl. Math. Model. 38 (2014) 5231–5238. [Google Scholar]
  • C. Wang, C. Liu, Z.H. Zhang and L. Zheng, Minimizing the total completion time for parallel machine scheduling with job splitting and learning. Comput. Ind. Eng. 97 (2016) 170–182. [Google Scholar]
  • W.C. Yeh, P.J. Lai, W.C. Lee and M.C. Chuang, Parallel-machine scheduling to minimize makespan with fuzzy processing times and learning effects. Inf. Sci. 269 (2014) 142–158. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.