Free Access
RAIRO-Oper. Res.
Volume 54, Number 3, May-June 2020
Page(s) 883 - 911
Published online 09 April 2020
  • D. Bell, Measuring risk and return of portfolios. In: Wise Shoices. HBS Publishing, Boston, MA (1996). [Google Scholar]
  • R. Bollapragada, U. Rao and J. Zhang, Managing inventory and supply performance in assembly systems with random supply capacity and demand. Manage. Sci. 50 (2004) 1729–1743. [Google Scholar]
  • R. Cheng, W. Ma and H. Ke, How does store-brand introduction affect a supply chain with uncertain information? J. Intell. Fuzzy Syst. 34 (2018) 189–201. [CrossRef] [Google Scholar]
  • L. Cox, Why risk is not variance: an expository note. Risk Anal. 28 (2008) 925–928. [PubMed] [Google Scholar]
  • D. Ellsberg, Risk, ambiguity, and the savage axioms. Q. J. Econ. 75 (1961) 643–669. [Google Scholar]
  • I. Heckmann, T. Comes and S. Nickel, A critical review on supply chain risk-definition, measure and modeling, Omega 52 (2015) 119–132. [Google Scholar]
  • K. Hendricks, V. Singhal, Supply chain disruptions and corporate performance, In: Supply Chain Disruptions: Theory and Practice of Managing Risks. Edited by H. Gurnani, A. Mehrotra and S. Ray. Springer, New York, NY (2012). [Google Scholar]
  • B. Kazaz, Production planning under yield and demand uncertainty with yield-dependent cost and price. Manuf. Serv. Oper. Manage. 6 (2004) 209–224. [CrossRef] [Google Scholar]
  • B. Kazaz, S. Webster, The impact of yield-dependent trading costs on pricing and production planning under supply uncertainty. Manuf. Serv. Oper. Manage. 13 (2011) 404–417. [CrossRef] [Google Scholar]
  • H. Ke, Y. Wu and H. Huang, Competitive pricing and remanufacturing problem in an uncertain closed-Loop supply chain with risk-sensitive retailers. Asia-Pac. J. Oper. Res. 35 (2018) 1850003. [CrossRef] [Google Scholar]
  • A. Latour, Trial by fire: a blaze in Albuquerque sets off major crisis for cellphone giants. Wall Street J. 1 (2001) 2001. [Google Scholar]
  • Q. Li, H. Xu and S. Zheng, Periodic-review inventory systems with random yield and demand: bounds and heuristics. IIE Trans. 40 (2008) 434–444. [Google Scholar]
  • Y. Li, X. Zhen, X. Qi and G. Cai, Penalty and financial assistance in a supply chain with supply disruption. Omega 61 (2016) 167–181. [Google Scholar]
  • B. Liu, Uncertainty Theory, 2nd ed.. Springer, Berlin (2007). [Google Scholar]
  • B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Springer, Berlin (2010). [Google Scholar]
  • B. Liu, Uncertainty Theory, 4th ed. Springer, Berlin (2015). [Google Scholar]
  • Z. Liu, R. Zhao, X. Liu and L. Chen, Contract designing for a supply chain with uncertain information based on confidence level. Appl. Soft Comput. 56 (2017) 617–631. [Google Scholar]
  • A. Lockamy and K. McCormack, Analysing risks in supply networks to facilitate outsourcing decisions. Int. J. Prod. Res. 48 (2010) 593–611. [Google Scholar]
  • F. Maccheroni, M. Marinacci and D. Ruffino, Alpha as ambiguity: robust mean variance portfolio analysis. Econometrica 81 (2013) 1075–1113. [Google Scholar]
  • H. Markowitz, Portfolio selection. J. Finance 7 (1952) 77–91. [Google Scholar]
  • H. Markowitz, Portfolio Selection: Efficient Diversification of Investments. John Wiley, Hoboken, NJ (1959). [Google Scholar]
  • H. Markowitz, Mean–variance approximations to expected utility. Eur. J. Oper. Res. 234 (2014) 346–355. [Google Scholar]
  • C. Poojari, C. Lucas and G. Mitra, Robust solutions and risk measures for a supply chain planning problem under uncertainty. J. Oper. Res. Soc. 59 (2008) 2–12. [Google Scholar]
  • S. Sarykalin, G. Serraino, S. Uryasev, Value-at-risk vs. conditional value-at-risk in risk management and optimization. Tutorials in Operations Research. Informs (2008) 270–294. [Google Scholar]
  • T. Sawik, Optimization of cost and service level in the presence of supply chain disruption risks: Single vs. multiple sourcing. Comput. Oper. Res. 51 (2014) 11–20. [Google Scholar]
  • H. Soleimani and K. Govindan, Reverse logistics network design and planning utilizing conditional value at risk. Eur. J. Oper. Res. 237 (2014) 487–497. [Google Scholar]
  • B. Tomlin, On the value of mitigation and contingency strategies for managing supply chain disruption risks. Manage. Sci. 52 (2006) 639–657. [Google Scholar]
  • Y. Wang and Y. Gerchak, Periodic review production models with variable capacity, random yield, and uncertain demand. Manage. Sci. 42 (1996) 130–137. [Google Scholar]
  • X. Wu, R. Zhao and W. Tang, Uncertain agency models with multi-dimensional incomplete information based on confidence level. Fuzzy Optim. Decis. Making 13 (2014) 231–258. [CrossRef] [Google Scholar]
  • H. Xu, X. Zuo and Z. Liu, Configuration of flexibility strategies under supply uncertainty. Omega 51 (2015) 71–82. [Google Scholar]
  • K. Yang, R. Zhao and Y. Lan, The impact of risk attitude in new product development under dual information asymmetry. Comput. Ind. Eng. 76 (2014) 122–137. [Google Scholar]
  • C. Zhou, W. Tang and R. Zhao, An uncertain search model for recruitment problem with enterprise performance. J. Intell. Manuf. 28 (2017) 695–704. [Google Scholar]
  • C. Zhou, J. Peng, Z. Liu and B. Dong, Optimal incentive contracts under loss aversion and inequity aversion. Fuzzy Optim. Decis. Making 18 (2018) 85–102. [CrossRef] [Google Scholar]
  • P. Zipkin, Foundations of Inventory Management. McGraw-Hill, New York City, NY (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.