Free Access
Issue
RAIRO-Oper. Res.
Volume 54, Number 3, May-June 2020
Page(s) 637 - 652
DOI https://doi.org/10.1051/ro/2019019
Published online 12 March 2020
  • T. Antczak, Saddle point criteria and the exact minimax penalty function method in nonconvex programming. Taiwanese J. Math. 17 (2013) 559–581. [CrossRef] [Google Scholar]
  • T. Antczak, Exactness of penalization for exact minimax penalty function method in nonconvex programming. Appl. Math. Mech. (English Ed.) 36 (2015) 541–556. [CrossRef] [Google Scholar]
  • T. Antczak, Exactness property of the exact absolute value penalty function method for solving convex nondifferentiable interval-valued optimization problems. J. Optim. Theory Appl. 176 (2018) 205–224. [Google Scholar]
  • T. Antczak, Exactness of the absolute value penalty function method for nonsmooth (ϕ, ρ)-invex optimization problems. Int. Trans. Oper. Res. 26 (2019) 1504–1526. [Google Scholar]
  • M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco and E.M.G.P. Fernandes, Firefly penalty-based algorithm for bound constrained mixed-integer nonlinear programming. Optimization 65 (2016) 1085–1104. [Google Scholar]
  • V.F. Demyanov and G.S. Tamasyan, Exact penalty functions in isoperimetric problems. Optimization 60 (2011) 153–177. [Google Scholar]
  • G. Di Pillo, S. Lucidi and F. Rinaldi, An approach to constrained global optimization based on exact penalty functions. J. Global Optim. 54 (2012) 251–260. [CrossRef] [Google Scholar]
  • M.V. Dolgopolik, A unifying theory of exactness of linear penalty functions. Optimization 65 (2016) 1167–1202. [Google Scholar]
  • S.A. Gustafson, Investigting semi-infinite programs using penalty functions and lagrangian methods. J. Aust. Math. Soc. Ser. B 28 (1986) 158–169. [CrossRef] [Google Scholar]
  • M.A. Hanson, Bounds for functionally convex optimal control problems. J. Math. Anal. Appl. 8 (1964) 84–89. [Google Scholar]
  • A. Jayswal and S. Choudhury, An exact l1 exponential penalty function method for multiobjective optimization problems with exponential-type invexity. J. Oper. Res. Soc. China 2 (2014) 75–91. [CrossRef] [Google Scholar]
  • A. Jayswal and S. Choudhury, An exact minimax penalty function method and saddle point criteria for nonsmooth convex vector optimization problems. J. Optim. Theory Appl. 169 (2016) 179–199. [Google Scholar]
  • S. Liu and E. Feng, The exponential penalty function method for multiobjective programming problems. Optim. Methods Softw. 25 (2010) 667–675. [Google Scholar]
  • S. Lucidi and F. Rinaldi, Exact penalty functions for nonlinear integer programming problems. J. Optim. Theory Appl. 145 (2010) 479–488. [Google Scholar]
  • B. Mond and M.A. Hanson, Duality for variational problems. J. Math. Anal. Appl. 18 (1967) 355–364. [Google Scholar]
  • A. Pitea and T. Antczak, Proper efficiency and duality for a new class of nonconvex multitime multiobjective variational problems. J. Inequal. Appl. 2014 (2014) Art. No. 333. [Google Scholar]
  • A. Pitea and M. Postolache, Duality theorems for a new class of multitime multiobjective variational problems. J. Global Optim. 54 (2012) 47–58. [CrossRef] [Google Scholar]
  • A. Pitea, C. Udrişte and Ş. Mititelu, PDI& PDE-constrained optimization problems with curvilinear functional quotients as objective vectors. Balkan J. Geom. Appl. 14 (2009) 75–88. [Google Scholar]
  • A. Pitea, C. Udrişte and Ş. Mititelu, New type dualities in PDI and PDE constrained optimization problems. J. Adv. Math. Stud. 2 (2009) 81–90. [Google Scholar]
  • C. Udrişte and I. Ţevy, Multi-time Euler-Lagrange-Hamilton theory. WSEAS Trans. Math. 6 (2007) 701–709. [Google Scholar]
  • C. Udrişte, O. Dogaru and I. Ţevy, Null Lagrangian forms and Euler-Lagrange PDEs. J. Adv. Math. Stud. 1 (2008) 143–156. [Google Scholar]
  • C. Udrişte, P. Popescu and M. Popescu, Generalized multi-time Lagrangians and Hamiltonians. WSEAS Trans. Math. 7 (2008) 66–72. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.