Free Access
RAIRO-Oper. Res.
Volume 54, Number 4, July-August 2020
Page(s) 949 - 959
Published online 16 April 2020
  • N.L.H. Anh, Mixed type duality for set-valued optimization problems via higher-order radial epiderivatives. Numer. Funct. Anal. Optim. 37 (2016) 823–838. [Google Scholar]
  • N.L.H. Anh, P.Q. Khanh and L.T. Tung, Higher-order radial derivatives and optimality conditions in nonsmooth vector optimization. Nonlinear Anal. 74 (2011) 7365–7379. [CrossRef] [Google Scholar]
  • J.P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclutions. In: Advances in Mathematics Supplementary Studies 7A, edited by L. Nachbin. Academic Press, New York (1981) 159–229. [Google Scholar]
  • J.P. Aubin and H. Frankowska, Set-valued Analysis. Birkhäuser, Boston, USA (1990). [Google Scholar]
  • E.M. Bednarczuk and W. Song, Contingent epiderivative and its applications to set-valued optimization. Control Cybernet. 27 (1998) 1–49. [Google Scholar]
  • H.P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71 (1979) 232–241. [Google Scholar]
  • C.R. Chen, S.J. Li and K.L. Teo, Higher order weak epiderivatives and applications to duality and optimality conditions. Comput. Math. Appl. 57 (2009) 1389–1399. [Google Scholar]
  • G.Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems. Math. Methods Oper. Res. 48 (1998) 187–200. [CrossRef] [Google Scholar]
  • G.Y. Chen and W.D. Rong, Characterizations of the Benson proper efficiency for nonconvex vector optimization. J. Optim. Theory Appl. 98 (1998) 365–384. [Google Scholar]
  • H.W. Corley, Optimality condition for maximizations of set-valued functions. J. Optim. Theory Appl. 58 (1988) 1–10. [Google Scholar]
  • M. Durea, First and second order optimality conditions for set-valued optimization problems. Rend. Circ. Mat. Palermo. 2 (2004) 451–468. [CrossRef] [Google Scholar]
  • F. Flores-Bazán, Optimality conditions in nonconvex set-valued optimization. Math. Methods Oper. Res. 53 (2001) 403–417. [CrossRef] [Google Scholar]
  • J. Jahn, Vector Optimization Theory, Applications and Extensions. Springer, Berlin, USA (2004). [Google Scholar]
  • J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization. Math. Methods Oper. Res. 46 (1997) 193–211. [CrossRef] [Google Scholar]
  • J. Jahn, A.A. Khan and P. Zeilinger, Second-order optimality conditions in set optimization. J. Optim. Theory Appl. 125 (2005) 331–347. [Google Scholar]
  • B. Jiménez and V. Novo, Second-order necessary conditions in set constrained differentiable vector optimization. Math. Methods Oper. Res. 58 (2003) 299–317. [CrossRef] [Google Scholar]
  • S.J. Li, K.L. Teo and X.Q. Yang, Higher-order optimality conditions for set-valued optimization. J. Optim. Theory Appl. 37 (2008) 533–553. [Google Scholar]
  • S.J. Li, S.K. Zhu and K.L. Teo, New generalized second-order contingent epiderivatives and set-valued optimization problems. J. Optim. Theory Appl. 152 (2012) 587–604. [Google Scholar]
  • Z. Li, A theorem of the alternative and its application to the optimization of set-valued maps. J. Optim. Theory Appl. 100 (1999) 365–375. [Google Scholar]
  • X.J. Long, J.W. Peng and M.M. Wong, Generalized radial epiderivatives and nonconvex set-valued optimization problems. Appl. Anal. 91 (2012) 1891–1900. [Google Scholar]
  • D.T. Luc, Theory of Vector Optimization. Springer, Berlin, USA (1989). [CrossRef] [Google Scholar]
  • Z.H. Peng and Y.H. Xu, New second-order tangent epiderivatives and applications to set-valued optimization. J. Optim. Theory Appl. 172 (2017) 128–140. [Google Scholar]
  • J.P. Penot, Second-order conditions for optimization problems with constraints. SIAM J. Control Optim. 37 (1998) 303–318. [Google Scholar]
  • B.H. Sheng and S.Y. Liu, On the generalized Fritz John optimality conditions of vector optimization with set-valued maps under Benson proper efficiency. Appl. Math. Mech. 23 (2002) 1444–1451. [Google Scholar]
  • J. Song and X.H. Gong, Approximation of the cone efficient solution for vector optimization problem. OR Trans. 11 (2007) 52–58. [Google Scholar]
  • A. Taa, Set-valued derivatives of multifunctions and optimality conditions. Numer. Funct. Anal. Optim. 19 (1998) 121–140. [Google Scholar]
  • Q.L. Wang, X.B. Li and G.L. Yu, Second-order weak composed epiderivatives and applications to optimality conditions. J. Ind. Manag. Optim. 9 (2013) 455–470. [Google Scholar]
  • Q.L. Wang and G.L. Yu, Higher-order weakly generalized epiderivatives and applications to optimality conditions. J. Appl. Math. 691018 (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.