Free Access
Issue
RAIRO-Oper. Res.
Volume 54, Number 4, July-August 2020
Page(s) 981 - 991
DOI https://doi.org/10.1051/ro/2019045
Published online 28 April 2020
  • N. Andrei, Numerical comparison of conjugate gradient algorithms for unconstrained optimization. Stud. Inform. Control 16 (2007) 333–352. [Google Scholar]
  • N. Andrei, Open problems in conjugate gradient algorithms for unconstrained optimization. B. Malays. Math. Sci. Soc. 34 (2011) 319–330. [Google Scholar]
  • S. Babaie-Kafaki, On the sufficient descent condition of the Hager–Zhang conjugate gradient methods. 4OR 12 (2014) 285–292. [CrossRef] [Google Scholar]
  • S. Babaie-Kafaki and R. Ghanbari, The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices. Eur. J. Oper. Res. 234 (2014) 625–630. [Google Scholar]
  • S. Babaie-Kafaki and R. Ghanbari, A descent family of Dai-Liao conjugate gradient methods. Optim. Methods Softw. 29 (2014) 583–591. [Google Scholar]
  • S. Babaie-Kafaki and R. Ghanbari, Two optimal Dai-Liao conjugate gradient methods. Optimization 64 (2015) 2277–2287. [Google Scholar]
  • S. Babaie-Kafaki and R. Ghanbari, Descent symmetrization of the Dai-Liao conjugate gradient method. Asia-Pac. J. Oper. Res. 33 (2016) 1650008. [CrossRef] [Google Scholar]
  • J. Barzilai and J.M. Borwein, Two–point stepsize gradient methods. IMA J. Numer. Anal. 8 (1988) 141–148. [CrossRef] [MathSciNet] [Google Scholar]
  • E.M.L. Beale, A derivation of conjugate gradientsIn: Numerical Methods for Nonlinear Optimization, edited by F.A. Lootsma. Academic Press, New York, NY (1972) 39–43. [Google Scholar]
  • H. Crowder and P. Wolfe, Linear convergence of the conjugate gradient method. IBM J. Res. Dev. 16 (1972) 431–433. [Google Scholar]
  • Y.H. Dai and C.X. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM J. Optim. 23 (2013) 296–320. [Google Scholar]
  • Y.H. Dai and L.Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001) 87–101. [Google Scholar]
  • Y.H. Dai, J.Y. Han, G.H. Liu, D.F. Sun, H.X. Yin and Y.X. Yuan, Convergence properties of nonlinear conjugate gradient methods. SIAM J. Optim. 10 (1999) 348–358. [Google Scholar]
  • Y.H. Dai, L.Z. Liao and D. Li, On restart procedures for the conjugate gradient method. Numer. Algorithms 35 (2004) 249–260. [Google Scholar]
  • E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [Google Scholar]
  • R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1964) 149–154. [Google Scholar]
  • J.C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2 (1992) 21–42. [Google Scholar]
  • N.I.M. Gould, D. Orban and P.L. Toint, CUTEr and SifDec: a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29 (2003) 373–394. [Google Scholar]
  • W.W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2 (2006) 35–58. [MathSciNet] [Google Scholar]
  • M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49 (1952) 409–436. [CrossRef] [MathSciNet] [Google Scholar]
  • N.J. Higham, Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA (2002). [CrossRef] [Google Scholar]
  • M.F. McGuire and P. Wolfe, Evaluating a restart procedure for conjugate gradients. Report RC–4382. IBM Research Center, Yorktown Heights (1973). [Google Scholar]
  • J. Nocedal and S.J. Wright, Numerical Optimization. Springer, New York, NY (2006). [Google Scholar]
  • A. Perry, A modified conjugate gradient algorithm. Oper. Res. 26 (1978) 1073–1078. [Google Scholar]
  • M.J.D. Powell, Restart procedures for the conjugate gradient method. Math. Program. 12 (1977) 241–254. [Google Scholar]
  • W. Sun and Y.X. Yuan, Optimization Theory and Methods: Nonlinear Programming. Springer, New York, NY (2006). [Google Scholar]
  • D.S. Watkins, Fundamentals of Matrix Computations. John Wiley and Sons, New York, NY (2002). [CrossRef] [Google Scholar]
  • C. Xu and J.Z. Zhang, A survey of quasi-Newton equations and quasi-Newton methods for optimization. Ann. Oper. Res. 103 (2001) 213–234. [Google Scholar]
  • G. Zoutendijk, Nonlinear programming computational methods. In: Integer and Nonlinear Programming, edited by J. Abadie. North-Holland, Amsterdam (1970) 37–86. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.