Free Access
Issue
RAIRO-Oper. Res.
Volume 54, Number 4, July-August 2020
Page(s) 1027 - 1040
DOI https://doi.org/10.1051/ro/2019049
Published online 20 May 2020
  • J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications. Springer Monographs in Mathematics. Springer-Verlag, London Ltd., London (2007). [Google Scholar]
  • H. Fernau and J.A. Rodríguez-Velázquez, A survey on alliances and related parameters in graphs. Electron. J. Graph Theory Appl. 2 (2014) 70–86. [CrossRef] [Google Scholar]
  • G.W. Flake, S. Lawrence and C.L. Giles, Efficient identification of web communities. In: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining. KDD ‘00, ACM, New York, NY, USA (2000). [Google Scholar]
  • Y. Fu, Dominating set and converse dominating set of a directed graph. Am. Math. Mon. 75 (1968) 861–863. [Google Scholar]
  • M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, USA (1979). [Google Scholar]
  • T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York, NY (1998). [Google Scholar]
  • L.H. Jamieson, Algorithms and complexity for alliances and weighted alliances of varoius types, Ph.D. thesis. Clemson University, Clemson, SC, USA (2007). [Google Scholar]
  • P. Kristiansen, S.M. Hedetniemi and S.T. Hedetniemi, Alliances in graphs. J. Combin. Math. Combin. Comput. 48 (2004) 157–177. [Google Scholar]
  • D.A. Mojdeh, B. Samadi and I.G. Yero, Global offensive #-alliances in digraphs. Preprint arXiv: 1905.01259 [math.CO] (2019). [Google Scholar]
  • E.F. Moore, The shortest path through a maze. In: Proceedings of the International Symposium on the Theory of Switching. Harvard University Press (1959) 285–292. [Google Scholar]
  • K. Ouazine, H. Slimani and A. Tari, Alliances in graphs: parameters, properties and applications-A survey. AKCE Int. J. Graphs Comb. 15 (2018) 115–154. [CrossRef] [Google Scholar]
  • J.A. Rodríguez-Velázquez and J.M. Sigarreta, Global defensive #-alliances in graphs. Discrete Appl. Math. 157 (2009) 211–218. [Google Scholar]
  • K.H. Shafique, Partitioning a graph in alliances and its application to data clustering. Ph.D. thesis, University of Central Florida (2004). [Google Scholar]
  • K.H. Shafique and R.D. Dutton, Maximum alliance-free and minimum alliance-cover sets. Congr. Numer. 162 (2003) 139–146. [Google Scholar]
  • K.H. Shafique and R.D. Dutton, A tight bound on the cardinalities of maximun alliance-free and minimun alliance-cover sets. J. Combin. Math. Combin. Comput. 56 (2006) 139–145. [Google Scholar]
  • K.H. Shafique and R.D. Dutton, On satisfactory partitioning of graphs. Congr. Numer. 154 (2002) 183–194. [Google Scholar]
  • P. Turán, On an extremal problem in graph theory. Math. Fiz. Lapok. 48 (1941) 436–452. [Google Scholar]
  • D.B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, USA (2001). [Google Scholar]
  • I.G. Yero and J.A. Rodríguez-Velázquez, A survey on alliances in graphs: defensive alliances. Utilitas Math. 105 (2017) 141–172. [Google Scholar]
  • K. Zuse, Der Plankalkül (in German). Konrad Zuse Internet Archive (1972) 96–105. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.