Free Access
Issue
RAIRO-Oper. Res.
Volume 54, Number 5, September-October 2020
Page(s) 1467 - 1494
DOI https://doi.org/10.1051/ro/2019080
Published online 23 July 2020
  • R. Bai, N. Xue, J. Chen and G.W. Roberts, A set-covering model for a bidirectional multi-shift full truckload vehicle routing problem. Transp. Res. Part B: Methodol. 79 (2015) 134–148. [Google Scholar]
  • B.M. Baker and M.A. Ayechew, A genetic algorithm for the vehicle routing problem. Comput. Oper. Res. 30 (2003) 787–800. [Google Scholar]
  • J. Brandão, A tabu search algorithm for the open vehicle routing problem. Eur. J. Oper. Res. 157 (2004) 552–564. [Google Scholar]
  • O. Bräysy and M. Gendreau, Metaheuristics for the vehicle routing problem with time windows. Report STF42 A1025 (2001). [Google Scholar]
  • O. Bräysy and M. Gendreau, Vehicle routing problem with time windows, Part II: Metaheuristics. Transp. Sci. 39 (2005) 119–139. [Google Scholar]
  • J. Brito, F.J. Martnez, J. Moreno and J.L. Verdegay, An aco hybrid metaheuristic for close–open vehicle routing problems with time windows and fuzzy constraints. Appl. Soft Comput. 32 (2015) 154–163. [Google Scholar]
  • E.K. Burke, M. Gendreau, G. Ochoa and J.D. Walker, Adaptive iterated local search for cross-domain optimisation. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. ACM (2011) 1987–1994. [Google Scholar]
  • J. Chen, R. Bai, R. Qu and G. Kendall, A task based approach for a real-world commodity routing problem. In: 2013 IEEE Workshop on Computational Intelligence in Production And Logistics Systems (CIPLS). IEEE (2013) 1–8. [Google Scholar]
  • B. Chen, R. Qu, R. Bai and H. Ishibuchi, A variable neighbourhood search algorithm with compound neighbourhoods for VRPTW. In: Proceedings of the 5th International Conference on Operations Research and Enterprise Systems (ICORES 2016), Rome, Italy. SCITEPRESS (2016) 25–35. [Google Scholar]
  • B. Chen, R. Qu and H. Ishibuchi, Variable-depth adaptive large meighbourhood search algorithm for open periodic vehicle routing problem with time windows. In: Proceedings of the International Conference on Harbor, Maritime and Multimodal Logistic Modelling and Simulation (HMS 2017), Barcelona, Spain (2017) 25–34. [Google Scholar]
  • G. Clarke and J.W. Wright, Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12 (1964) 568–581. [Google Scholar]
  • J.-F. Cordeau, G. Laporte and A. Mercier, A unified tabu search heuristic for vehicle routing problems with time windows. J. Oper. Res. Soc. 52 (2001) 928–936. [Google Scholar]
  • J.-F. Cordeau, G. Laporte and A. Mercier, Improved tabu search algorithm for the handling of route duration constraints in vehicle routing problems with time windows. J. Oper. Res. Soc. 55 (2004) 542–546. [Google Scholar]
  • J.-F. Cordeau, G. Laporte, M.W. Savelsbergh and D. Vigo, Vehicle routing. Handbooks Oper. Res. Manage. Sci. 14 (2007) 367–428. [Google Scholar]
  • A. Danandeh, M. Ghazanfari, R. Tavakoli-Moghaddam and M. Alinaghian, A swift heuristic algorithm based on capacitated clustering for the open periodic vehicle routing problem. In: Proceedings of the 9th WSEAS International Conference on Artificial intelligence, Knowledge Engineering and Data Bases, World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2010) 208–214. [Google Scholar]
  • G.B. Dantzig and J.H. Ramser, The truck dispatching problem. Manage. Sci. 6 (1959) 80–91. [Google Scholar]
  • G. Dueck, New optimization heuristics: the great deluge algorithm and the record-to-record travel. J. Comput. Phys. 104 (1993) 86–92. [Google Scholar]
  • B. Eksioglu, A.V. Vural and A. Reisman, The vehicle routing problem: a taxonomic review. Comput. Ind. Eng. 57 (2009) 1472–1483. [Google Scholar]
  • G. Eppen and L. Schrage, Centralized ordering policies in a multi-warehouse system with lead times and random demand. Multi-Level Prod./Inventory Control Syst.: Theory Pract. In Vol. 16. North-Holland (1981) 51–67. [Google Scholar]
  • Z. Fu, R. Eglese and L.Y. Li, A new tabu search heuristic for the open vehicle routing problem. J. Oper. Res. Soc. 56 (2005) 267–274. [Google Scholar]
  • H. Gehring and J. Homberger, A parallel hybrid evolutionary metaheuristic for the vehicle routing problem with time windows. In: Proceedings of EUROGEN99. Citeseer (1999) 57–64. [Google Scholar]
  • M. Gendreau, J.-Y. Potvin, O. Bräumlaysy, G. Hasle and A. Løkketangen, Metaheuristics for the vehicle routing problem and its extensions: a categorized bibliography. In: The Vehicle Routing Problem: Latest Advances and New Challenges. Springer, Boston, MA (2008) 143–169. [Google Scholar]
  • B.E. Gillett and L.R. Miller, A heuristic algorithm for the vehicle-dispatch problem. Oper. Res. 22 (1974) 340–349. [Google Scholar]
  • B. Golden, A. Assad, L. Levy and F. Gheysens, The fleet size and mix vehicle routing problem. Comput. Oper. Res. 11 (1984) 49–66. [Google Scholar]
  • B.L. Golden, S. Raghavan and E.A. Wasil, The Vehicle Routing Problem: Latest Advances and New Challenges. In: Vol. 43. Springer Science & Business Media (2008). [Google Scholar]
  • L. Guiyun, An improved ant colony algorithm for open vehicle routing problem with time windows. In: Vol. 2 of 2009 International Conference on Information Management, Innovation Management and Industrial Engineering. IEEE (2009) 616–619. [Google Scholar]
  • L. Guiyun, Research on open vehicle routing problem with time windows based on improved genetic algorithm. In: International Conference on Computational Intelligence and Software Engineering, 2009. CiSE 2009. IEEE (2009) 1–5. [Google Scholar]
  • P. Hansen, N. Mladenović and J.A.M. Pérez, Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175 (2010) 367–407. [Google Scholar]
  • V.C. Hemmelmayr, K.F. Doerner and R.F. Hartl, A variable neighborhood search heuristic for periodic routing problems. Eur. J. Oper. Res. 195 (2009) 791–802. [Google Scholar]
  • V.C. Hemmelmayr, J.-F. Cordeau and T.G. Crainic, An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Comput. Oper. Res. 39 (2012) 3215–3228. [PubMed] [Google Scholar]
  • G. Ioannou, M. Kritikos and G. Prastacos, A greedy look-ahead heuristic for the vehicle routing problem with time windows. J. Oper. Res. Soc. 52 (2001) 523–537. [Google Scholar]
  • Y. Jin, A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. Fusion Found. Methodol. App. 9 (2005) 3–12. [Google Scholar]
  • N. Jozefowiez, F. Semet and E.-G. Talbi, Multi-objective vehicle routing problems. Eur. J. Oper. Res. 189 (2008) 293–309. [Google Scholar]
  • T. Kaji and A. Ohuchi, A simulated annealing algorithm with the random compound move for the sequential partitioning problem of directed acyclic graphs. Eur. J. Oper. Res. 112 (1999) 147–157. [Google Scholar]
  • G. Laporte, M. Gendreau, J.-Y. Potvin and F. Semet, Classical and modern heuristics for the vehicle routing problem. Int. Trans. Oper. Res. 7 (2000) 285–300. [Google Scholar]
  • J.K. Lenstra and A. Kan, Complexity of vehicle routing and scheduling problems. Networks 11 (1981) 221–227. [Google Scholar]
  • A.N. Letchford, J. Lysgaard and R.W. Eglese, A branch-and-cut algorithm for the capacitated open vehicle routing problem. J. Oper. Res. Soc. 58 (2007) 1642–1651. [Google Scholar]
  • F. Li, B. Golden and E. Wasil, The open vehicle routing problem: algorithms, large-scale test problems, and computational results. Comput. Oper. Res. 34 (2007) 2918–2930. [Google Scholar]
  • S. Lin, Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44 (1965) 2245–2269. [Google Scholar]
  • Q. Lin, Z. Liu, Q. Yan, Z. Du, C.A.C. Coello, Z. Liang, W. Wang and J. Chen, Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. Inf. Sci. 339 (2016) 332–352. [Google Scholar]
  • R. Liu and Z. Jiang, The close–open mixed vehicle routing problem. Eur. J. Oper. Res. 220 (2012) 349–360. [Google Scholar]
  • T. Lourens, Using population-based incremental learning to optimize feasible distribution logistic solutions. Thesis, University of Stellenbosch, Stellenbosch (2005). [Google Scholar]
  • G. Maps, Google maps. Accessed: 2018-05-11. https://www.google.co.uk/maps/@29.8715435,121.8372319,12z/data=!3m1!4b1!4m2!6m1!1s1IPQurvRAx3x96-V7XEUw6h9kmFs (2018). [Google Scholar]
  • M. Mourgaya and F. Vanderbeck, Column generation based heuristic for tactical planning in multi-period vehicle routing. Eur. J. Oper. Res. 183 (2007) 1028–1041. [Google Scholar]
  • I. Or, Traveling Salesman-type Combinatorial Problems and Their Relation to the Logistics of Regional Blood Banking. Xerox University Microfilms (1976). [Google Scholar]
  • J. Park and B.-I. Kim, The school bus routing problem: a review. Eur. J. Oper. Res. 202 (2010) 311–319. [Google Scholar]
  • A. Perwira Redi, M.F. Maghfiroh, V.F. Yu, An improved variable neighborhood search for the open vehicle routing problem with time windows. In: 2013 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE (2013) 1641–1645. [Google Scholar]
  • S. Pirkwieser and G.R. Raidl, A variable neighborhood search for the periodic vehicle routing problem with time windows. In: Proceedings of the 9th EU/meeting on Metaheuristics for Logistics and Vehicle Routing, Troyes, France (2008) 23–24. [Google Scholar]
  • D. Pisinger and S. Ropke, A general heuristic for vehicle routing problems. Comput. Oper. Res. 34 (2007) 2403–2435. [Google Scholar]
  • J.-Y. Potvin and J.-M. Rousseau, An exchange heuristic for routeing problems with time windows. J. Oper. Res. Soc. 46 (1995) 1433–1446. [Google Scholar]
  • J.-Y. Potvin, T. Kervahut, B.-L. Garcia and J.-M. Rousseau, The vehicle routing problem with time windows Part I: tabu search. INFORMS J. Comput. 8 (1996) 158–164. [Google Scholar]
  • A. Rahimi-Vahed, T. Gabriel Crainic, M. Gendreau and W. Rei, Fleet-sizing for multi-depot and periodic vehicle routing problems using a modular heuristic algorithm. Comput. Oper. Res. 53 (2015) 9–23. [Google Scholar]
  • P.P. Repoussis, C.D. Tarantilis andG. Ioannou, The open vehicle routing problem with time windows. J. Oper. Res. Soc. 58 (2007) 355–367. [Google Scholar]
  • S. Ropke and D. Pisinger, An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40 (2006) 455–472. [Google Scholar]
  • S. Ropke and D. Pisinger, A unified heuristic for a large class of vehicle routing problems with backhauls. Eur. J. Oper. Res. 171 (2006) 750–775. [Google Scholar]
  • M.W. Savelsbergh, The vehicle routing problem with time windows: minimizing route duration. ORSA J. Comput. 4 (1992) 146–154. [Google Scholar]
  • K. Schopka and H. Kopfer, An Adaptive Large Neighborhood Search for the Reverse Open Vehicle Routing Problem with Time Windows. Springer (2016) 243–257. [Google Scholar]
  • J.E. Smith and T.C. Fogarty, Operator and parameter adaptation in genetic algorithms. Soft Comput. 1 (1997) 81–87. [Google Scholar]
  • M.M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35 (1987) 254–265. [Google Scholar]
  • J.A. Soria Alcaraz, G. Ochoa, M. Carpio and H. Puga, Evolvability metrics in adaptive operator selection. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation. ACM (2014) 1327–1334. [Google Scholar]
  • É. Taillard, P. Badeau, M. Gendreau, F. Guertin and J.-Y. Potvin, A tabu search heuristic for the vehicle routing problem with soft time windows. Transp. Sci. 31 (1997) 170–186. [Google Scholar]
  • C.D. Tarantilis, G. Ioannou, C.T. Kiranoudis and G.P. Prastacos, A threshold accepting approach to the open vehicle routing problem. RAIRO: OR 38 (2004) 345–360. [Google Scholar]
  • C.D. Tarantilis, G. Ioannou, C.T. Kiranoudis and G.P. Prastacos, Solving the open vehicle routeing problem via a single parameter metaheuristic algorithm. J. Oper. Res. Soc. 56 (2005) 588–596. [Google Scholar]
  • M. Thathachar and P.S. Sastry, Varieties of learning automata: an overview. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 32 (2002) 711–722. [Google Scholar]
  • P.M. Thompson and J.B. Orlin, The theory of cyclic transfers (1989). [Google Scholar]
  • D. Thierens, An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 7th Annual Conference on Genetic and evolutionary Computation. ACM (2005) 1539–1546. [Google Scholar]
  • P. Toth and D. Vigo, The Vehicle Routing Problem. SIAM (2001). [Google Scholar]
  • N. Veerapen, J. Maturana and F. Saubion, An exploration-exploitation compromise-based adaptive operator selection for local search. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation. ACM (2012) 1277–1284. [Google Scholar]
  • T. Vidal, T.G. Crainic, M. Gendreau and C. Prins, A unified solution framework for multi-attribute vehicle routing problems. Eur. J. Oper. Res. 234 (2014) 658–673. [Google Scholar]
  • D. Vigo, A heuristic algorithm for the asymmetric capacitated vehicle routing problem. Eur. J. Oper. Res. 89 (1996) 108–126. [Google Scholar]
  • X. Wang and A.C. Regan, Local truckload pickup and delivery with hard time window constraints. Transp. Res. Part B: Methodol. 36 (2002) 97–112. [Google Scholar]
  • N. Wieberneit, Service network design for freight transportation: a review. OR Spect. 30 (2008) 77–112. [Google Scholar]
  • B. Yu and Z.Z. Yang, An ant colony optimization model: the period vehicle routing problem with time windows. Transp. Res. Part E: Logistics Transp. Rev. 47 (2011) 166–181. [Google Scholar]
  • E.E. Zachariadis and C.T. Kiranoudis, An open vehicle routing problem metaheuristic for examining wide solution neighborhoods. Comput. Oper. Res. 37 (2010) 712–723. [Google Scholar]
  • R. Zhang, W.Y. Yun and H. Kopfer, Heuristic-based truck scheduling for inland container transportation. OR Spect. 32 (2010) 787–808. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.