Free Access
Issue
RAIRO-Oper. Res.
Volume 54, Number 5, September-October 2020
Page(s) 1347 - 1368
DOI https://doi.org/10.1051/ro/2019048
Published online 26 June 2020
  • A. Ancarani, C.D. Mauro and D. Durso, Measuring overconfidence in inventory management decisions. J. Purchas. Supply Manage. 22 (2016) 171–180. [CrossRef] [Google Scholar]
  • A. Basu, R. Lal, V. Srinivasan and R. Staelin, Salesforce-compensation plans: An agency theoretic perspective. Market. Sci. 4 (1985) 267–291. [CrossRef] [Google Scholar]
  • E. Bendoly, R. Croson, P. Goncalves and K. Schultz, Bodies of knowledge for research in behavioral operations. Prod. Oper. Manage. 19 (2010) 434–452. [CrossRef] [Google Scholar]
  • P. Bhardwaj, Delegating pricing decisions. Market. Sci. 20 (2001) 143–169. [CrossRef] [Google Scholar]
  • L.W. Busenitz and J.B. Barney, Differences between entrepreneurs and managers in large organizations: Biases and heuristics in strategic decision-making. J. Bus. Ventur. 12 (1997) 9–30. [Google Scholar]
  • X. Chao, B. Yang and Y. Xu, Dynamic inventory and pricing policy in a capacitated stochastic inventory system with fixed ordering cost. Oper. Res. Lett. 40 (2012) 99–107. [CrossRef] [Google Scholar]
  • F. Chen, Sales-Force incentives and inventory management. Manuf. Serv. Oper. Manage. 2 (2000) 186–202. [CrossRef] [Google Scholar]
  • F. Chen, Salesforce incentives, market information and production/inventory planning. Manage. Sci. 51 (2005) 60–75. [Google Scholar]
  • K.G. Chen, X.Y. Wang, M. Huang and W.K. Ching, Salesforce contract design, joint pricing and production planning with asymmetric overconfidence sales agent. J. Ind. Manage. Opt. 13 (2017) 873–899. [Google Scholar]
  • A.T. Coughlan and C. Narasimhan, An empirical analysis of sales-force compensation plans. J. Bus. 65 (1992) 93–121. [Google Scholar]
  • J. Cai, X. Hu, Y. Han, H. Cheng and W. Huang, Supply chain coordination with an option contract under vendor-managed inventory. Int. Trans. Oper. Res. 23 (2016) 1163–1183. [Google Scholar]
  • C.H. Chiu, T.M. Choi and C.S. Tang, Price, rebate, and returns supply contracts for coordinating supply chains with price-dependent demands. Prod. Oper. Manage. 20 (2010) 81–91. [CrossRef] [Google Scholar]
  • L.Y. Chu and G. Lai, Salesforce contracting under demand censorship. Manuf. Serv. Oper. Manage. 15 (2013) 320–334. [CrossRef] [Google Scholar]
  • Y. Dai and X.L. Chao, Salesforce contract design and inventory planning with asymmetric risk-averse sales agents. Oper. Res. Lett. 41 (2013) 86–91. [CrossRef] [Google Scholar]
  • Y. Dai and X.L. Chao, Price delegation and salesforce contract design with asymmetric risk aversion coefficient of sales agents. Int. J. Prod. Econ. 172 (2016) 31–42. [Google Scholar]
  • L.E. De la Rosa, Overconfidence and moral hazard. Games Econ. Behav. 73 (2011) 429–451. [Google Scholar]
  • J. Fisher and R. Wang, Pharmaceutical Marketing for the Millennium. WR Hambrecht Co., San Francisco, California (2001). [Google Scholar]
  • J. Gonik, Tie salesmen’s bonuses to their forecasts. Harv. Bus. Rev. 56 (1978) 116–123. [Google Scholar]
  • B. Holmstrom and P. Milgrom, Aggregation and linearity in the provision of intertemporal incentives. Econometrica 55 (1985) 303–328. [Google Scholar]
  • M. Kaya and O. Ozer, Quality risk in outsourcing: Noncontractible product quality and private quality cost information. Naval Res. Logist. 56 (2010) 669–685. [CrossRef] [Google Scholar]
  • K.L. Keiber, Managerial compensation contracts and overconfidence. Working paper, WHU Otto Beisheim Graduate School of Management, Vallendar (2002). [Google Scholar]
  • L.C. Kung and Y.J. Chen, Monitoring the market or the salesperson? The value of information in a multilayer supply chain. Naval Res. Logist. 58 (2011) 743–762. [CrossRef] [Google Scholar]
  • R. Lal, Technical note-delegating pricing responsibility to the salesforce. Market. Sci. 5 (1986) 159–168. [CrossRef] [Google Scholar]
  • C.Y. Lee and R. Yang, Compensation plan for competing salespersons under asymmetric information. Eur. J. Oper. Res. 227 (2013) 570–580. [Google Scholar]
  • C.Y. Lee and R. Yang, Supply chain contracting with competing suppliers under asymmetric information. IIE Trans. 45 (2013) 25–52. [Google Scholar]
  • M. Li, N. Petruzzi and J. Zhang, Overconfident competing newsvendors. Manage. Sci. 63 (2017) 2637–2646. [Google Scholar]
  • Y.H. Lin, S.Y. Hu and M.S. Chen, Managerial optimism and corporate investment: Some empirical evidence from Taiwan. Pac. Basin Finance J. 13 (2005) 523–546. [CrossRef] [Google Scholar]
  • C.H. Loch, Behavioral Operations Management., Now Publishers Inc., Hanover (2007). [Google Scholar]
  • X. Lu, J. Shang, S. Wu, G. Gajanan, L. Vargas and D. Zhao, Impacts of supplier hubris on inventory decisions and green manufacturing endeavors. Eur. J. Oper. Res. 245 (2015) 121–132. [Google Scholar]
  • S. Ludwig, P.C. Wichardt and H. Wickhorst, Overconfidence can improve an agent’s relative and absolute performance in contests. Econ. Lett. 110 (2011) 193–196. [Google Scholar]
  • B.K. Mishra and A. Prasad, Centralized pricing versus delegating pricing to the salesforce under information asymmetry. Market. Sci. 23 (2004) 21–27. [CrossRef] [Google Scholar]
  • B.K. Mishra and A. Prasad, Delegating pricing decisions in competitive markets with symmetric and asymmetric information. Market. Sci. 24 (2005) 490–497. [CrossRef] [Google Scholar]
  • N.M. Modak, Exploring Omni-channel supply chain under price and delivery time sensitive stochastic demand. Supply Chain Forum Int. J. 18 (2017) 218–230. [CrossRef] [Google Scholar]
  • N.M. Modak and P. Kelle, Managing a dual-channel supply chain under price and delivery-time dependent stochastic demand. Eur. J. Oper. Res. 272 (2018) 147–161. [Google Scholar]
  • D.A. Moore and P.J. Healy, The trouble with overconfidence. Psychol. Rev. 115 (2008) 502–517. [CrossRef] [PubMed] [Google Scholar]
  • O. Ozer and G. Raz, Supply chain sourcing under asymmetric information. Prod. Oper. Manage. 20 (2011) 92–115. [CrossRef] [Google Scholar]
  • Y. Ren, D.C. Croson and R.T.A. Croson, The overconfident newsvendor. J. Oper. Res. Soc. 68 (2017) 496–506. [Google Scholar]
  • Y. Ren and R. Croson, Overconfidence in newsvendor orders: An experimental study. Manage. Sci. 59 (2013) 2502–2517. [Google Scholar]
  • J.E. Russo and P.J.H. Schoemaker, Managing overconfidence. Sloan Manage. Rev. 33 (1992) 7–17. [PubMed] [Google Scholar]
  • S. Saghafian and X. Chao, The impact of operational decisions on the design of salesforce incentives. Naval Res. Logist. 61 (2014) 320–340. [CrossRef] [Google Scholar]
  • A. Sandroni and F. Squintani, Overconfidence and asymmetric information: The case of insurance. J. Econ. Behav. Org. 93 (2013) 149–165. [CrossRef] [Google Scholar]
  • E.V.D. Steen, Rational overoptimism (and Other Biases). Am. Econ. Rev. 94 (2004) 1141–1151. [Google Scholar]
  • T. Steenburgh and M. Ahearne, Motivating salespeople: What really works. Harv. Bus. Rev. 90 (2012) 70–75. [Google Scholar]
  • J. Tarun, J. Hazra and T.C.E. Cheng, Sourcing under overconfident buyer and suppliers. Int. J. Prod. Econ. 206 (2018) 93–109. [Google Scholar]
  • E. Van den Steen, Overconfidence by bayesian-rational agents. Manage. Sci. 57 (2011) 884–896. [Google Scholar]
  • L. Xu, X. Shim, P. Du, K. Govindan and Z.C. Zhang, Optimization on pricing and overconfidence problem in a duopolistic supply chain. Comput. Oper. Res. 101 (2019) 162–172. [Google Scholar]
  • S. Yang, X. Zhao, V. Shi and J. Zhu, Joint determination of salesforce compensation, production, and pricing decisions. Int. J. Syst. Sci. Oper. Logist. 2 (2015) 144–155. [Google Scholar]
  • A.A. Zoltners, P. Sinha and S.E. Lorimer, Sales force effectiveness: A framework for researchers and practitioners. J. Pers. Sell. Sales Manage. 28 (2008) 115–131. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.