Free Access
Issue
RAIRO-Oper. Res.
Volume 54, Number 5, September-October 2020
Page(s) 1437 - 1452
DOI https://doi.org/10.1051/ro/2019077
Published online 23 July 2020
  • M. Abbas and D. Chaabane, Optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 174 (2006) 1140–1161. [Google Scholar]
  • R.E. Bellman and L.A. Zadeh, Decision–making in a fuzzy environment. Manage. Sci. 17 (1970) 141–164. [Google Scholar]
  • H.P. Benson, Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26 (1978) 569–580. [Google Scholar]
  • H.P. Benson, Optimization over the Efficient Set. J. Math. Anal. App. 98 (1984) 562–580. [Google Scholar]
  • H.P. Benson and S. Sayin, Optimization over the efficient set: four special cases. J. Optim. Theory Appl. 80 (1994) 3–18. [Google Scholar]
  • D. Chaabane and F. Mebrek, Optimization of a linear function over the set of stochastic efficient solutions. Comput. Manage. Sci. 11 (2014) 157–178. [Google Scholar]
  • D. Chaabane and M. Pirlot, A Method for optimizing over the integer efficient set. J. Ind. Manage. Optim. 6 (2010) 811–823. [Google Scholar]
  • D. Chaabane, B. Brahmi and Z. Ramdani, The augmented weighted Tchebychev norm for optimizing a linear function over an integer efficient set of a multicriteria linear program. Int. Trans. Oper. Res. 19 (2012) 531–545. [Google Scholar]
  • D. Dubois and H. Prade, Operations on fuzzy numbers. Int. J. Syst. Sci. 9 (1978) 613–626. [Google Scholar]
  • D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications. In: Vol. 144. Academic Press, Georgia Institute of Technology (1980). [Google Scholar]
  • D. Dubois and H. Prade, Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 30 (1983) 183–224. [Google Scholar]
  • J.G. Ecker and J.H. Song, Optimizing a linear function over an efficient set. J. Optim. Theory Appl. 83 (1994) 541–563. [Google Scholar]
  • J. Figueira, S. Greco and M. Ehrgott, Multiple Criteria Decision Analysis: Stat of the Art Surveys. Springer, Boston (2005). [Google Scholar]
  • R. Horst, N.V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming. J. Optim. Theory Appl. 134 (2007) 433–443. [Google Scholar]
  • M. Inuiguchi and M. Sakawa, Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test. Fuzzy Sets Syst. 78 (1996) 231–241. [Google Scholar]
  • J.M. Jorge, A bilinear algorithm for optimizing a linear function over the efficient set of a multiple objective linear programming problem. J. Global Optim. 31 (2005) 1–16. [Google Scholar]
  • J.M. Jorge, An algorithm for optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 195 (2009) 98–103. [Google Scholar]
  • G. Kirlik and S. Sayn, A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232 (2014) 479–88. [Google Scholar]
  • N.C. Nguyen, An Algorithm for Optimizing a Linear Function over the Integer Efficient Set. Konrad-Zuse-Zentrum fur Informationstechnik Berlin (1992). [Google Scholar]
  • M. Sakawa, Fuzzy sets and interactive multiobjective optimization. In: Applied Information Technology, Springer (1993). [Google Scholar]
  • M. Sakawa, H. Yano and T. Yumine, An interactive fuzzy satisficing method for multiobjective linear-programming problems and its application. IEEE Trans. Syst. Man Cybern. 17 (1987) 654–661. [Google Scholar]
  • M. Sakawa, I. Nishizaki and H. Katagiri, Fuzzy Stochastic Multiobjective Programming. Springer, New York 159 (2011). [Google Scholar]
  • R.E. Steuer, Multiple Criteria Optimization: Theory, Computation and Application. Wiley, New York (1986). [Google Scholar]
  • J. Sylva and A. Crema, A method for finding the set of non-dominated vectors for multiple objective integer linear programs. Eur. J. Oper. Res. 158 (2004) 46–55. [Google Scholar]
  • H. Tanaka, T. Okuda and K. Asai, Fuzzy mathematical programming (in Japanese). Trans. Soc. Instrum. Control Eng. 9 (1973) 607–613. [Google Scholar]
  • H. Tanaka, T. Okuda and K. Asai, On Fuzzy-Mathematical programming. J. Cybern. 3 (1973) 37–46. [Google Scholar]
  • J. Teghem, Programmation linéaire (Linear Programming). Ellipses, Université de Bruxelles (1996). [Google Scholar]
  • Y. Yamamoto, Optimization over the efficient set: overview. J. Global Optim. 22 (2002) 285–317. [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inf. Control 8 (1965) 38–353. [Google Scholar]
  • H.-J. Zimmermann, Description and optimization of fuzzy systems. Int. J. Gen. Syst. 2 (1975) 209–215. [Google Scholar]
  • H.-J. Zimmermann, Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1 (1978) 45–55. [Google Scholar]
  • H.-J. Zimmermann, Fuzzy Set Theory and its Applications. Kluwer Academic Publishers, Springer, New York (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.