Free Access
RAIRO-Oper. Res.
Volume 54, Number 5, September-October 2020
Page(s) 1249 - 1268
Published online 12 June 2020
  • L. Abolnikov and A. Dukhovny, Markov chains with transition delta-matrix: ergodicity conditions, invariant probability measures and applications. Int. J. Stochastic Anal. 4 (1900) 333–355. [CrossRef] [Google Scholar]
  • A.S. Alfa, Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System. Springer Science & Business Media (2010). [CrossRef] [Google Scholar]
  • I. Atencia and P. Moreno, The discrete-time Geo/Geo/1 queue with negative customers and disasters. Comput. Oper. Res. 31 (2004) 1537–1548. [Google Scholar]
  • F.P. Barbhuiya, N. Kumar and U.C. Gupta, Batch renewal arrival process subject to geometric catastrophes. Method. Comput. Appl. Probab. 21 (2019) 69–83. [CrossRef] [Google Scholar]
  • R. Bartoszynski, W.J. Buehler, W. Chan and D.K. Pearl, Population processes under the influence of disasters occurring independently of population size. J. Math. Biol. 27 (1989) 167–178. [Google Scholar]
  • H. Baumann and W. Sandmann, Steady state analysis of level dependent quasi-birth-and-death processes with catastrophes. Comput. Oper. Res. 39 (2012) 413–423. [Google Scholar]
  • O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server markovian queue with catastrophes. Eur. J. Oper. Res. 218 (2012) 708–715. [Google Scholar]
  • P.J. Brockwell, J. Gani and S.I. Resnick, Birth, immigration and catastrophe processes. Adv. Appl. Probab. 14 (1982) 709–731. [Google Scholar]
  • H. Bruneel and B.G. Kim, Discrete-time Models for Communication Systems Including ATM. Kluwer Acadmic, Boston (1993). [CrossRef] [Google Scholar]
  • H. Bruneel and T. Maertens, A discrete-time queue with customers with geometric deadlines. Perform. Eval. 85 (2015) 52–70. [CrossRef] [Google Scholar]
  • H. Bruneel, T. Maertens, B. Steyaert, D. Claeys, D. Fiems and J. Walraevens, Analysis of a two-class single-server discrete-time fcfs queue: the effect of interclass correlation. TOP 26 (2018) 403–436. [CrossRef] [Google Scholar]
  • B. Cairns and P.K. Pollett, Extinction times for a general birth, death and catastrophe process. J. Appl. Probab. 41 (2004) 1211–1218. [Google Scholar]
  • M.L. Chaudhry, On numerical computations of some discrete-time queues. In: Computational Probability, edited by W.K. Grassmann, Springer (2000) 365–408. [CrossRef] [Google Scholar]
  • M.L. Chaudhry, U.C. Gupta and J.G.C. Templeton, On the relations among the distributions at different epochs for discrete-time GI/Geom/1 queues. Oper. Res. Lett. 18 (1996) 247–255. [CrossRef] [Google Scholar]
  • D. Claeys, B. Steyaert, J. Walraevens, K. Laevens and H. Bruneel, Tail probabilities of the delay in a batch-service queueing model with batch-size dependent service times and a timer mechanism. Comput. Oper. Res. 40 (2013) 1497–1505. [Google Scholar]
  • C. Dabrowski, Catastrophic event phenomena in communication networks: a survey. Comput. Sci. Rev. 18 (2015) 10–45. [CrossRef] [Google Scholar]
  • A. Economou, On the control of a compound immigration process through total catastrophes. Eur. J. Oper. Res. 147 (2003) 522–529. [Google Scholar]
  • A. Economou, The compound poisson immigration process subject to binomial catastrophes. J. Appl. Probab. 41 (2004) 508–523. [Google Scholar]
  • A. Economou and D. Fakinos, A continuous-time markov chain under the influence of a regulating point process and applications in stochastic models with catastrophes. Eur. J. Oper. Res. 149 (2003) 625–640. [Google Scholar]
  • A. Economou and A. Gómez-Corral, The batch markovian arrival process subject to renewal generated geometric catastrophes. Stochastic Models 23 (2007) 211–233. [Google Scholar]
  • S.N. Elaydi, An Introduction to Difference Equations. Springer, New York (2005). [Google Scholar]
  • R.G. Gallager, Stochastic Processes: Theory for Applications. Cambridge University Press, Cambridge (2013). [CrossRef] [Google Scholar]
  • J.J. Hunter, In: Vol. 1 of Mathematical Techniques of Applied Probability: Discrete Time Models: Basic Theory. Academic Press, London (2014). [Google Scholar]
  • S. Jeyakumar and P. Gunasekaran, An analysis of discrete queue with disaster and single vacation. Int. J. Pure Appl. Math. 113 (2017) 82–90. [Google Scholar]
  • C. Lee, The density of the extinction probability of a time homogeneous linear birth and death process under the influence of randomly occurring disasters. Math. Biosci. 164 (2000) 93–102. [Google Scholar]
  • H.M. Park, W.S. Yang and K.C. Chae, Analysis of the GI/Geo/1 queue with disasters. Stochastic Anal. App. 28 (2009) 44–53. [CrossRef] [MathSciNet] [Google Scholar]
  • C.L. Shafer, Inter-reserve distance. Biol. Conserv. 100 (2001) 215–227. [Google Scholar]
  • H. Takagi, In: Vol. 3 of Queuing Analysis: A Foundation of Performance Evaluation. Discrete Time Systems. North-Holland, Amsterdam (1993). [Google Scholar]
  • M.E. Woodward, Communication and Computer Networks: Modelling with Discrete-time Queues. Wiley-IEEE Computer Society Pr (1994). [Google Scholar]
  • X.W. Yi, J.D. Kim, D.W. Choi and K.C. Chae, The Geo/G/1 queue with disasters and multiple working vacations. Stochastic Models 23 (2007) 537–549. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.