Free Access
Issue
RAIRO-Oper. Res.
Volume 54, Number 5, September-October 2020
Page(s) 1385 - 1400
DOI https://doi.org/10.1051/ro/2019072
Published online 28 July 2020
  • N. Adler, L. Friedman and Z. Sinuany-Stern, Review of ranking methods in the data envelopment analysis context. Eur. J. Oper. Res. 140 (2002) 249–265. [Google Scholar]
  • P. Andersen and N.C. Petersen, A procedure for ranking efficient units in data envelopment analysis. Manag. Sci. 39 (1993) 1261–1294. [Google Scholar]
  • R. Azizi, R. Kazemi Matin and R. Farzipoor Saen, Ranking units and determining dominance relations in the cost efficiency analysis, RAIRO: OR 49 (2015) 879–896. [Google Scholar]
  • R.D. Banker and J.L. Giffort, “Relative Efficiency Analysis’’, Unpublished Manuscript (A 1987 Version Appeared as a Working Paper, Schools of Urban and Public Affairs, Carnegie-millon University) (1987). [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • W.D. Cook and L.M. Seiford, Data envelopment analysis (DEA)-thirty years on. Eur. J. Oper. Res. 192 (2009) 1–17. [Google Scholar]
  • W.W. Cooper, L.M. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text with Models, Applications. Kluwer Academic Publisher, References and DEA-Solver Software (1999). [Google Scholar]
  • B. Ebrahimi and M. Rahmani, An improved approach to find and rank BCC-efficient DMUs in data envelopment analysis (DEA). J. Ind. Syst. Eng. 10 (2017) 25–34. [Google Scholar]
  • M.K. Ekiza and C.T. Sakara, A new DEA approach to fully rank DMUs with an application to MBA programs. Int. Trans. Oper. Res. 27 (2020) 1886–1910. [Google Scholar]
  • A. Emrouznejad, An alternative DEA measure: A case of OECD countries. Appl. Econ. Lett. 10 (2003) 779–782. [Google Scholar]
  • A. Emrouznejad and M.M. Tavana, Performance Measurement with Fuzzy Data Envelopment Analysis. Springer (2014). [Google Scholar]
  • A. Emrouznejad and E. Thanassoulis, A mathematical model for dynamic efficiency using data envelopment analysis. Appl. Math. Comput. 160 (2005) 363–378. [Google Scholar]
  • A. Emrouznejad and E. Thanassoulis, Measurement of productivity index with dynamic DEA. Int. J. Oper. Res. 8 (2010) 247–260. [Google Scholar]
  • A. Emrouznejad and G. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. J. Socio-Econ. Plan. Sci. 61 (2018) 4–8. [Google Scholar]
  • S. Fallah-Fini, K. Triantis and A.L. Johnson, Reviewing the literature on non-parametric dynamic efficiency measurement: State-of-the-art. J. Product. Anal. 41 (2014) 51–67. [Google Scholar]
  • R. Färe and S. Grosskopf, Intertemporal Production Frontiers: With Dynamic DEA. Kluwer Academic Publishers, Dordrecht, Netherlands (1996). [Google Scholar]
  • D. Gharakhani, A. Toloie Eshlaghy, K. Fathi Hafshejani, R. Kiani Mavi and F. Hosseinzadeh Lotfi, Common weights in dynamic network DEA with goal programming approach for performance assessment of insurance companies in Iran. Manag. Res. Rev. 41 (2018) 920–938. [Google Scholar]
  • S. Ghobadi, A generalized DEA model for inputs (outputs) estimation under inter-temporal dependence. RAIRO: OR 53 (2019) 1791–1805. [Google Scholar]
  • S. Ghobadi, A dynamic DEA model for resource allocation, Int. J. Math. Oper. Res. (in press). [Google Scholar]
  • S. Ghobadi, G.R. Jahanshahloo, F. Hoseinzadeh Lotfi and M. Rostami-malkhalifeh, Dynamic inverse DEA in the presence of fuzzy data. Adv. Environ. Biol. 8 (2014) 139–151. [Google Scholar]
  • S. Ghobadi, G.R. Jahanshahloo, F. Hoseinzadeh Lotfi and M. Rostami-malkhalifeh, Efficiency measure under inter-temporal dependence. Int. J. Technol. Decis. Mak. 17 (2018) 657–675. [Google Scholar]
  • I. Guo, H. Lee and D. Lee, An integrated model for slack-based measure of super-efficiency in additive DEA. Omega 67 (2016) 160–167. [Google Scholar]
  • A. Hatami-Marbini, Benchmarking with network DEA in a fuzzy environment. RAIRO: OR 53 (2019) 687–703. [Google Scholar]
  • F. Hoseinzadeh Lotfi, G.R. Jahanshahloo, M. Khodabakhshi, M. Rostami-malkhalifeh, Z. Moghaddas and M. Vaez-Ghasemi, A review of ranking models in data envelopment analysis. J. Appl. Math. 2013 (2013) 1–20. [Google Scholar]
  • J. Jablonsky, Multicriteria approaches for ranking of efficient units in DEA models. Cent. Eur. J. Oper. Res. 20 (2012) 435–449. [Google Scholar]
  • G.R. Jahanshahloo, F. Hosseinzadeh Lotfi, H. Zhiani Rezai and F. Rezai Balf, Using monte carlo method for ranking efficient DMUs. Appl. Math. Comput. 162 (2005) 371–379. [Google Scholar]
  • G.R. Jahanshahloo, J. Sadeghi and M. Khodabakhshi, Fair ranking of the decision making units using optimistic and pessimistic weights in data envelopment analysis. RAIRO: OR 51 (2017) 253–260. [Google Scholar]
  • G.R. Jahanshahloo, M. Soleimani-damaneh and S. Ghobadi, Inverse DEA under inter-temporal dependence using multiple-objective programming. Eur. J. Oper. Res. 240 (2015) 447–456. [Google Scholar]
  • G.R. Jahanshahloo, M. Soleimani-damaneh and M. Reshadi, On the pareto (dynamically) efficient paths. Int. J. Comput. Math. 83 (2006) 629–633. [Google Scholar]
  • L. Li, X. Lv, W. Xu, Z. Zhang and X. Rong, Dynamic super-efficiency interval data envelopment analysis. In: 10th International Conference on Computer Science & Education (ICCSE) (2015) 213–218. [Google Scholar]
  • S. Mehrabian, M. Alirezaee and G.R. Jahanshahloo, A complete efficiency ranking of decision making units in data envelopment analysis. Comput. Optim. Appl. 14 (1999) 261–266. [Google Scholar]
  • J. Nemoto, M. Goto, Dynamic data envelopment analysis: Modeling intertemporal behavior of a firm in the presence of productive inefficiencies. Econ. Lett. 64 (1999) 51–56. [Google Scholar]
  • J. Pourmahmoud, New model for ranking DMUs in DDEA as a special case. Int. J. Ind. Math. 7 (2015) 1–6. [Google Scholar]
  • S. Saati, M.L. Zarafat Angiz, A. Memariani and G.R. Jahanshahloo, A model for ranking decision making units in data envelopment analysis. Ric. Oper. 31 (2001) 47–59. [Google Scholar]
  • K. Sengupta, Dynamics of Data Envelopment Analysis: Theory of System Efficiency. Kluwer Academic Publishers, Dordrecht, London (1995). [Google Scholar]
  • T. Sueyoshi and K. Sekitani, Returns to scale in dynamic DEA. Eur. J. Oper. Res. 16 (2005) 536–544. [Google Scholar]
  • R.M. Thrall, Duality classification and slacks in data envelopment analysis. Ann. Oper. Res. 66 (1996) 109–138. [Google Scholar]
  • M. Toloo, On finding the most BCC-efficient DMU: A new integrated MIP–DEA model. Appl. Math. Model. 36 (2012) 5515–5520. [Google Scholar]
  • K. Tone and M. Tsutsui, Dynamic DEA: A slacks-based measure approach. Omega 38 (2010) 145–156. [Google Scholar]
  • K. Tone and M. Tsutsui, Dynamic DEA with network structure: A slacksbased measure approach. Omega 42 (2014) 124–131. [Google Scholar]
  • T.H. Tran, Y. Mao, P. Nathanail, P. Siebers and D. Robinson, Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis. Omega 85 (2019) 156–165. [Google Scholar]
  • Y.M. Wang, Y. Luo and Y.X. Lan, Commonweights for fully ranking decision making units by regression analysis. Expert Syst. Appl. 38 (2011) 9122–9128. [Google Scholar]
  • E. Zeinodin and S. Ghobadi, Merging decision-making units under inter-temporal dependence. IMA J. Manag. Math. 31 (2020) 139–166. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.