Issue |
RAIRO-Oper. Res.
Volume 33, Number 4, October-December 1999
|
|
---|---|---|
Page(s) | 525 - 541 | |
DOI | https://doi.org/10.1051/ro:1999122 | |
Published online | 15 August 2002 |
Classification croisée et modèles
Institut de Mathematiques, Université
Ferhat Abbas de Setif, Setif 19000, Algérie.
The relations between automatic clustering methods and inferentiel statistical models have mostely been studied when the data involves only one set. We propose to study these relations in the case of data involving two sets. We shall look at cross clustering methods as suggested by Govaert [6]; we show that these methods, like the simple clustering methods, can be considered as a clustering approach of a mixture model. We introduce the notion of crossed mixture from a concret example and define the notions of likelihood and associated clustered likelihood. Then, we study the relations which exist between the crossed mixture models and simple models and we show that these relations are completely similar to those which exist between the crossed clustering methods and simple clustering methods.
Résumé
Les liens existant entre les methodes de classification automatique et les modeles de statistiques inferentielles ont surtout ete etudies lorsque les donnees mettent en jeu un seul ensemble. Nous nous proposons ici de le faire lorsque les donnees mettent en jeu deux ensembles. Nous nous sommes interesses aux methodes de classification croisee proposees par Govaert [6]; nous montrons que ces methodes, comme les methodes de classification simple, peuvent etre considerees, comme une approche classification d'un modele de melange. Nous introduisons la notion de melange croise a partir d'un exemple concret et nous definissons les notions de vraisemblance et de vraisemblance classifiante associees, nous etudions ensuite les liens qui existent entre les modeles de melange croise et les modeles de melange simple et nous montrons que ces liens sont tout a fait analogues a ceux qui existent entre les methodes de classification croisee et les methodes de classification simple.
Key words: L1 distance / automatic clustering / mixture / cross mixture.
© EDP Sciences, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.