Issue |
RAIRO-Oper. Res.
Volume 38, Number 3, July-September 2004
|
|
---|---|---|
Page(s) | 255 - 274 | |
DOI | https://doi.org/10.1051/ro:2004023 | |
Published online | 15 September 2004 |
On constraint qualifications in directionally differentiable multiobjective optimization problems
1
Dipartimento di Ricerche Aziendali, Università
degli Studi di Pavia, Via S. Felice, 5, 27100 Pavia, Italy; ggiorgi@eco.unipv.it.
2
Departamento de
Economía e Historia Económica, Facultad de
Economía y Empresa, Universidad de Salamanca, Campus Miguel de Unamuno, s/n, 37007
Salamanca, Spain; bjimen1@encina.pntic.mec.es.
3
Departamento de
Matemática Aplicada, UNED, Calle Juan del Rosal, 12, Ciudad
Universitaria, Apartado 60149, 28080 Madrid, Spain; vnovo@ind.uned.es.
Received:
5
December
2003
Accepted:
25
March
2004
We consider a multiobjective optimization problem with a feasible set defined by inequality and equality constraints such that all functions are, at least, Dini differentiable (in some cases, Hadamard differentiable and sometimes, quasiconvex). Several constraint qualifications are given in such a way that generalize both the qualifications introduced by Maeda and the classical ones, when the functions are differentiable. The relationships between them are analyzed. Finally, we give several Kuhn-Tucker type necessary conditions for a point to be Pareto minimum under the weaker constraint qualifications here proposed.
Mathematics Subject Classification: 90C29 / 90C46
Key words: Multiobjective optimization problems / constraint qualification / necessary conditions for Pareto minimum / Lagrange multipliers / tangent cone / Dini differentiable functions / Hadamard differentiable functions / quasiconvex functions.
© EDP Sciences, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.