Free Access
Issue |
R.I.R.O.
Volume 2, Number 14, 1968
|
|
---|---|---|
Page(s) | 29 - 35 | |
DOI | https://doi.org/10.1051/ro/196802V300291 | |
Published online | 07 February 2017 |
- M. ACHI, Optimisation of stochestic systems. Topics in discete time sytems, Academic Press (1967). [Zbl: 0168.15802] [Google Scholar]
- R. ARIS, Discrete dynamic programming, Blaisdell Publ. Co. (1964). [Zbl: 0122.37503] [Google Scholar]
- R. BELLMAN, Dynamic programming, Princeton Univ. Press, Princeton (N. J.), 342 p. (1957). [MR: 90477] [Zbl: 0077.13605] [Google Scholar]
- R. BELLMAN, Adaptive control processes : a guided tour, Princeton Univ, Press, Princeton (N. J.), (1961). [MR: 134403] [Zbl: 0103.12901] [Google Scholar]
- R. BELLMAN et S. DREYFUS, Applied dynamic programming. Princeton Univ. Press. Princeton (N. J.), 363 p. (1962). [MR: 140369] [Zbl: 0106.34901] [Google Scholar]
- R. BELLMAN et R. KALABA, Dynamic programming and modern control theory, Academic Press (1965). [MR: 204191] [Zbl: 0139.04502] [Google Scholar]
- D. BLACWELL, « Discrete dynamc programming », Ann. Math. Stat. 33. 719-26 (1962). [MR: 149965] [Zbl: 0133.12906] [Google Scholar]
- M. CONNORS et D. TEICHROEW, Optimal Control of dynamic Operations Research models, International Textbook Co, Scranton, Pa, 118 p. (1967). [Zbl: 0159.48801] [Google Scholar]
- A. DELEDICQ, « Programmation dynamique discrète : k-optimums d'un problème séquentiel », Revue française d'Informatique et de R.O., II-V2. 13-32 (août 1968). [EuDML: 104447] [Zbl: 0208.22302] [Google Scholar]
- [10] E. V. DENARDO, « Separable Markovian decision problems », Management Sciences, 14, 7, 451-62 (mars 1968). [MR: 240910] [Zbl: 0263.90042] [Google Scholar]
- E. V. DENARDO et B. L. FOX, « Multichain Markov renewal programs », SIAM J. Appl. Math. 16, 3, 468-87 (mai 1968). [MR: 234721] [Zbl: 0201.19303] [Google Scholar]
- S. E. DREYFUS, Dynamic programming and the calculus of variations, Academic Press, 248 p. (1965). [MR: 199764] [Zbl: 0193.19401] [Google Scholar]
- G. de GHELLINCK et G. D. EPPEN, « Linear programming solutions for separable Markovian decision problems », Manag. Science, 13, 5, 371-94 (janvier 1967). [MR: 252034] [Zbl: 0203.22001] [Google Scholar]
- G. de GHELLINCK et L. PEETERS, « Markov programming » Invited paper, European Meeting 1968, IMS-TIMS-ES-IASPS, Amsterdam, 2-7 sept. 1968. [Google Scholar]
- Ph. HERVÉ, « Les procédures arborescentes d'optimisation », Revue Franç. d'Inf. et de Rech. Op., n° 14-V8, pp. 69-80 (1968). [EuDML: 104458] [MR: 249089] [Zbl: 0177.23101] [Google Scholar]
- R. HOWARD, Dynamic programming and Markov processes, The Technology Press of the M.I.T. et 3. Wiley, 136 p. (1960). [MR: 118514] [Zbl: 0091.16001] [Google Scholar]
- R. HOWARD, « Dynamic programming », Management Science, 12, 5, 317-48 (janvier 1966). [Google Scholar]
- O. R. L. JACOBS, An introduction to dynamic programming, Chapman et Hall, London, 124 p. (1967). [Zbl: 0189.19803] [Google Scholar]
- W. S. JEWELL, « Markov-Renawal programming », I : Formulation, Finite return models. II : Infinite return models, Example », Operations Research, 11, 6, 938-71 (1963). [MR: 163374] [Zbl: 0126.15905] [Google Scholar]
- A. KAUFMANN et R. CRUON, La programmation dynamique. Gestion scientifique séquentielle, Dunod, Paris, 273 p. (1965). [MR: 202492] [Zbl: 0132.13605] [Google Scholar]
- A. KAUFMANN et R. CRUON Dynamic programming: Sequential scientific Management, translated by H. Sneid Academic Press (1967). [MR: 216855] [Zbl: 0149.38102] [Google Scholar]
- A. KAUFMANN et R. CRUON « Étude de la sensibilité en programmation dynamique : politiques k-optimales en avenir certain », Revue Française de Recherche Opérationnelle, 32, 293-302 (4e trimestre 1964). [Zbl: 0129.34203] [Google Scholar]
- A. KAUFMANN et R. CRUON Stratégies k-optimales dans les programmes dynamique stochastiques finis », 4e Congrès international de l'IFORS, Boston, 20 août-2 septembre 1966. [Zbl: 0205.22701] [Google Scholar]
- R. E. LARSON, « A survey of dynamic programming computational procedures », IEEE Trans. on Automatic control, AC-12, 6 767-74 (déc. 1967). [Google Scholar]
- G. de LEVE, Generalized Markovian decision processes. I. Model and Method. II : Probabilistic bacground, Mathematisch Centrum, 2nd Boerhaavestraat 49, Amsterdam, 128 + 123 p. (1964). [Google Scholar]
- J. J. MARTIN, Bayesian decision problems and Markov chains, Wiley (1967). [MR: 221709] [Zbl: 0164.50102] [Google Scholar]
- B. L. MILLER, « Finding optimal policies in discrete dynamic programming », RAND memorandum RM-5601-PR, 11 p. (avril 1968). [Google Scholar]
- R. PALLU DE LA BARRIÈRE, Cours d'automatique théorique, Dunod, Paris (1966). [MR: 187954] [Zbl: 0133.39601] [Google Scholar]
- R. PALLU DE LA BARRIÈRE, Optimal Control Theory, Saunders, Philadelphie (1967). [MR: 211770] [Zbl: 0155.15203] [Google Scholar]
- L. S. PONTRYAGIN, V. BOLTYANSKII, R. GAMKRELIDZE et E. MISHCHENKO, The mathematical theory of optimal processes, Wiley (1962). [MR: 166037] [Zbl: 0117.31702] [Google Scholar]
- S. M. ROBERTS, Dynamic programming in chemical engineering and process control, Academic Press (1964). [Google Scholar]
- P. J. SCHWEITZER, Perturbation theory and Markovian decision processes, Techn. Report n° 15, Contract Nonr-1841-(87), NR 042-230, Mass. Institute of Techn. (AD 618-406), 316 p. (juin 1965). [Google Scholar]
- R. D. SMALLWOOD, « Optimum policy regions for Markov processes with discounting », Operations Research, 14, 4, 658-69 (juillet-août 1966). [MR: 195632] [Zbl: 0139.37801] [Google Scholar]
- D. SWORDER, Optimal adaptive control systems, Academic Press (1966). [MR: 211801] [Zbl: 0168.15801] [Google Scholar]
- A. F. WEINOTT Jr., « On finding optimal policies in discrete dynamic programming with no discounting », Ann. Math. Stat., 37, 1284-95 (1966). [MR: 208992] [Zbl: 0149.16301] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.