Free Access
R.A.I.R.O. Recherche opérationnelle
Volume 7, Number V2, 1973
Page(s) 77 - 105
Published online 06 February 2017
  • ABADIE (J.), I. Application of the GRG algorithm to optimal control problems, ch. 8 in : Integer and Non linear Programming, J. Abadie (ed.), North-Holland Publishing Company, Amsterdam, 1970. [MR: 437059] [Zbl: 0332.90040] [Google Scholar]
  • ABADIE (J.), II. Optimization Problems with coupled Blocks, Economic Computation and Economic Cybernetics Studies and Research, année 1970, n° 4, pages 5-26, 1970. [MR: 300646] [Zbl: 0249.90068] [Google Scholar]
  • ABADIE (J.) et BICHARA (M.), Expériences numériques sur une méthode de résolution de certains problèmes de commande optimale, Électricité de France, Direction des Études et Recherches, Note HI 739/00, 1972. [Google Scholar]
  • ABADIE (J.) et CARPENTIER (J.), Generalization of the Wolfe Reduced Gradient method to the case of nonlinear constraints, ch. 4 in : Optimization, R. Fletcher (ed.), Academic Press, London and New York, 1969. [MR: 284206] [Zbl: 0254.90049] [Google Scholar]
  • ADELMAN (I.), ed., Practical Approaches to Development Planning, The John Hopkins Press, Baltimore, 1969. [Google Scholar]
  • ALBOUY (M.), La régulation économique dans l'entreprise, Dunod, Paris, 1972. [Google Scholar]
  • AUSLENDER (A.), Méthodes et Théorèmes de dualité, R.I.R.O., 4e année, n° R1, pages 9-45, 1970. [EuDML: 193138] [MR: 270778] [Zbl: 0204.47603] [Google Scholar]
  • BRETON (A.) et FALGARONE (F.), Application de la commande optimale au problème du choix des investissements, Électricité de France, Études Économiques Générales, Note M 67, 1972. [Google Scholar]
  • DANTZIG (G. B.), Application of Generalized Linear Programming to Control Theory, ch. XII, in : Nonlinear Programming, J. Abadie (ed.), North-Holland Publishing Company, Amsterdam, 1967. [MR: 223167] [Zbl: 0178.22701] [Google Scholar]
  • FLETCHER (R.) and REEVES (C. M.), Function minimization by conjugate gradients, Computer Journal, vol. 7, pages 149-154, 1964. [MR: 187375] [Zbl: 0132.11701] [Google Scholar]
  • JACOBSON (D. H.) and LELE (M. M.), A Transformation Technique for Optimal Control Problems with a State Variable Inequality Constraint, IEEE Trans. AC-14, vol. 5, pages 457-464, 1969. [Google Scholar]
  • KENDRICK (D.) and TAYLOR (L.), A Dynamic Nonlinear Planning Model for Korea, ch. 7, in : Practical Approaches to Development Planning, I. Adelman (ed.), The John Hopkins Press, Baltimore, 1969. [Google Scholar]
  • KENDRICK (D.) and TAYLOR (L.), Numerical Solutions of non-linear planning models, Econometrica, vol. 38, pages 453-467, 1970. [Google Scholar]
  • KUHN (H. W.) and TUCKER (A. W.), Nonlinear Programming, pages 481-492 in : Proceedings of the Second Berkeley Symposium, J. Neyman, ed., The University of California Press, Berkeley, 1951. [MR: 47303] [Zbl: 0044.05903] [Google Scholar]
  • MEHRA (R. K.) and DAVIS (R. E.), A generalized gradient method for optimal control problems with inequality constraints and singular arcs, communication présentée à : Joint Automatic Control Conference, St. Louis, Missouri, 11-13 août 1971. [Zbl: 0268.49038] [Google Scholar]
  • ROSEN (J. B.), Optimal Control and Convex Programming, ch. XIII, in : Nonlinear Programming J. Abadie (ed.), North-Holland Publishing Company, Amsterdam, 1967. [MR: 218136] [Zbl: 0183.22702] [Google Scholar]
  • TABAK (D.) and KUO (B. C.), Optimal Control by Mathematical Programming, Prentice Hall, Englewood Cliffs, 1971. [MR: 398581] [Google Scholar]
  • ZADEH (L. A.) and WHALEN (B. H.), On Optimal Control and Linear Programming, IRE Trans. Automatic Control, AC.-7, pages 45-46, 1962. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.