Free Access
Issue
R.A.I.R.O. Recherche opérationnelle
Volume 9, Number V2, 1975
Page(s) 33 - 51
DOI https://doi.org/10.1051/ro/197509V200331
Published online 09 February 2017
  • AGARD J., ARABEYRE J. P, VAUTIER J., Génération automatique des rotations d'équipages, R.I.R.O., n° 6, 1967.
  • HEURGON E., Un problème de recouvrement : l'habillage des horaires des lignes d'autobus, R.A.I.R.O., 6e année, n° V-l, 1972, ,p. 13-29. [EuDML: 104533]
  • GARFINKEL R. S. andNEMHAUSER G. L., Optimal Political Distriucting by Implicit Enumeration Techniques, Management Science, 16, B 495-B 508. [Zbl: 0195.22103]
  • ROY B., An algorithm for General Constrained Set Covering Problem, in GraphTheory and Computing, Academic Press Inc., p. 267-283. [MR: 340061] [Zbl: 0255.05006]
  • AUZET C., Un modèle de recouvrement sous contraintes : synthèse des principales applications possibles, , Direction Scientifique de METRA, note de travail n° 184,janvier 1973.
  • MARTIN G., An accelerated Euclidean Algorithm for Integer Linear Programming, in Recent Advances in Mathematical Programming (Graves and Wolfe, éd.), McGraw-Hill, New York, 1963. [MR: 157776] [Zbl: 0129.34201]
  • SALKIN H. M. and KONCAL R. D., Set Covering by an All Integer Algorithm : Computational Experience, Journal of the Association for Computing Machinery 1973, vol. 20, n° 2, p. 189-193. [Zbl: 0258.65067]
  • GONDRAN M., Un algorithme de coupes efficace par la méthode des congruences décroissantes, note EDF, HI 1234/02 du 11juillet 1973.
  • DELORME J., Thèse de troisième cycle, à paraître.
  • LEMKE C., SALKIN H. and SPIELBERG K., Set Covering by single branch enumeration with linear programming subproblems, Oper. Res., 19(1971), , p. 998-1022. [MR: 418914] [Zbl: 0232.90033]
  • PIERCE J. F. and LASKY, All-zero-one Integer Programming Problems, ManagementScience 19, n° 5 (1973), p. 528-543. [Zbl: 0254.90042]
  • THIRIEZ Z., Airline Crew Scheduling : a group theoric Approach, 1969, Rep. R-67 Flight Transportation Laboratory, Massachusetts Institute of Technology.
  • HOUSE R. W., NELSON L. D. and RADO J. Computer Studies of a Certain Classof Linear Integer Problems, in Recent Advances in Optimization Techniques (Lavi and Vogl ed.), John Wiley and Sons, 1966. [Zbl: 0146.41007]
  • BELLMORE M. and RATLIFF H. D., Set Covering and Involutory Bases, Management Science 18 (1971), p. 194-206. [MR: 386684] [Zbl: 0241.90036]
  • ROY B., Algèbre linéaire et théorie des graphes, Tome 2, Chap. 10, Dunod, 1970. [MR: 260413]
  • GONDRAN M. et LAURIÈRE J. L., Un algorithme pour le problème de partitionnement, R.A.I.R.O., n° V-l, 1974, p.25-38. [EuDML: 104583] [Zbl: 0272.90045]
  • GARFINKEL R. S. and NEMHAUSER G. L., Integer Programming, chapitre 8,John Wiley and Sons, 1972. [MR: 381688] [Zbl: 0259.90022]
  • DANTZIG G. B., FULKERSON D. R. and JOHNSON S. M., Solution of a large Scale Travelling Salesman Problem, Opns. Res. 2 (1954), p. 393-410. [MR: 70932]
  • HELD M.and KARP R. M., The traveling-Salesman Problem and Minimum Spanning Trees, Opns. Res. 18 ( 1970, p. 1138-1162. [MR: 278710] [Zbl: 0226.90047]
  • LITTLE J., MURTY K., SWEENEY D. and KAREL C., An algorithm for the Traveling Salesman Problem, Opns. Res. 11 (1963), p. 979-989. [Zbl: 0161.39305]
  • HAMMER P. L., Booleau procedures for bivalent programming, in Mathematical programming theory and applications, North Holland, 1974. [MR: 479387]
  • BALAS E. et PADBERG M.W., On the set covering problem II. Opns. Res. 1974. [Zbl: 0324.90045]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.