Free Access
Issue
RAIRO-Oper. Res.
Volume 11, Number 2, 1977
Page(s) 201 - 222
DOI https://doi.org/10.1051/ro/1977110202011
Published online 06 February 2017
  • 1. J. AGARD, J. SUDAROVICH et F. HEMMER, Sélection et affectation optimales d'une flotte d'avions, R.A.I.R.O., 7e année, V-2, mai 1973, p. 3-26. [EuDML: 104571] [Google Scholar]
  • 2. M. HELD et R. M. KARP, The Traveling Salesman Problem and Minimum Spanning Trees, Mathematical Programming, vol. 1, n° 1, 1971, p. 6-25. [MR: 289119] [Zbl: 0232.90038] [Google Scholar]
  • 3. M. HELD, P. WOLFE et H. P. CROWDER, Validation of Subgradient Optimization, Mathematical Programming, vol. 6, n° 1, 1974, p. 62-88. [MR: 341863] [Zbl: 0284.90057] [Google Scholar]
  • 4. M. L. FISCHER et J. F. SHAPIRO, Constructive Duality in Integer Programming Working paper O. R. 008-72 Operation Research Center M.I.T., Cambridge, Mass., avril 1972. [Google Scholar]
  • 5. S. AGMON, The Relaxation Method for Linear Inequalities, Canad. J. Math., vol. 6, 1974, p. 382-392. [MR: 62786] [Zbl: 0055.35001] [Google Scholar]
  • 6. T. MOTZKIN et I. J. SCHOENBERG, The Relaxation Method for Linear Inequalities, Canad. J. Math., vol. 6, 1974, p. 393-404. [MR: 62787] [Zbl: 0055.35002] [Google Scholar]
  • 7. P. WOLFE, M. HELD et R. M. KARP, Large scale optimization and the relaxation method, in: Proceedings of the 25th Nat. A.C.M. meeting Boston, Massassuchets, 1972. [Google Scholar]
  • 8. C. LEMARÉCHAL, Méthodes de sous-gradients, Bulletin de la Direction des Études et Recherches EDF, série C, n° 2, 1974, p. 5-14. [MR: 398098] [Google Scholar]
  • 9. P. WOLFE, A Method of Conjugate Subgradients for Minimizing Non Differentiable Functions, Mathematical Programming (à paraître). [Zbl: 0369.90093] [Google Scholar]
  • 10. M. MINOUX, Plus court chemin avec contraintes supplémentaires, Annales des Télécommunications, t. 30, nos 11-12, 1975. [Google Scholar]
  • 11. R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, 1970. [MR: 274683] [Zbl: 0932.90001] [Google Scholar]
  • 12. L. S. LASDON, Optimization Theory for Large Systems, Macmillan series for Ops. Res., 1970. [MR: 337317] [Zbl: 0224.90038] [Google Scholar]
  • 13. R. C. GRINOLD, Steepest Ascent for Large Scale Linear Programs, S.I.A.M. Rev., vol. 14, 1972, p. 447-464. [MR: 307693] [Zbl: 0281.90044] [Google Scholar]
  • 14. B. T. POLJAK, A General Method of Solving Extremum Problems, Sov. Math. Doklady, vol. 8, 1967, p. 593-597. [Zbl: 0177.15102] [Google Scholar]
  • 15. B. T. POLJAK, Minimization of Unsmooth Functionals, U.S.S.R. Computational Math. and Math. Physics, 1969. [Zbl: 0229.65056] [Google Scholar]
  • 16. G. B. DANTZIG et P. WOLFE, Decomposition Principle for Linear Programs, J. ORSA, vol. 8, n° 1, 1960, p. 101-111. [Zbl: 0093.32806] [Google Scholar]
  • 17. J. FARKAS, Über die Theorie der einfachen Ungleichungen, Journal für die reine und angewandte Mathematik, vol. 124, 1901, p. 1-27. [EuDML: 149129] [Zbl: 32.0169.02] [JFM: 32.0169.02] [Google Scholar]
  • 18. G. T. ROSS et R. M. SOLAND, A Branch and Bound Algorithm for the Generalized Assignment Problem, Mathematical Programming, vol. 8, 1975, p. 91-103. [MR: 368757] [Zbl: 0308.90028] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.