Free Access
RAIRO-Oper. Res.
Volume 12, Number 3, 1978
Page(s) 285 - 290
Published online 06 February 2017
  • 1. E. M. L. BEALE, Sparseness in Linear Programming, in Large Sparse Sets of Linear Equations, J. K. REID, éd., Academic Press, London, 1971, pp. 1-15. [Google Scholar]
  • 2. H. CROWDER and J. M. HATTINGH, Partially Normalized Pivot Selection in Linear Programming, Mathematical Programming Study, Vol. 4, 1975, pp. 12-25. [MR: 429104] [Zbl: 0394.90060] [Google Scholar]
  • 3. L. CUTLER and P. WOLFE, Experiments in Linear Programming, in Recent advances in mathematical programming R. L. GRAVES and P. WOLFE, éd. McGraw-Hill, New York, 1963, pp. 177-200. [MR: 155682] [Zbl: 0223.90001] [Google Scholar]
  • 4. G. B. DANTZIG, Linear Programming and Extensions, Princeton University Press Princeton, N.J., 1963. [MR: 201189] [Zbl: 0997.90504] [Google Scholar]
  • 5. J. C. DICKSON and F. P. FREDERICK, A Decision Rule for Improved Efficiency in Solving Linear Programming Problems with the Simplex Algorithm, Communications of the Association for Computing Machinery, Vol. 3, 1960. [MR: 115820] [Zbl: 0111.17301] [Google Scholar]
  • 6. D. GOLDFARB, Using the Steepest-Edge Simplex Algorithm to Solve Sparse Linear Programs in Sparse matrix computations, J. R. BUNCH and D. ROSE, ed., Academic Press, New York, 1976, pp. 227-240. [MR: 462566] [Zbl: 0345.65033] [Google Scholar]
  • 7. P. M. J. HARRIS, Pivot Selection Methods of the Devex LP Code, Mathematical Programming Study, Vol. 4, 1975, pp. 30-57. [MR: 391947] [Zbl: 0395.90046] [Google Scholar]
  • 8. E. HELLERMAN and D. RARICK, Reinversion with the Preassigned Pivot Procedure, Mathematical Programming, Vol. 1, 1971, pp. 195-216. [MR: 293819] [Zbl: 0246.65022] [Google Scholar]
  • 9. H. W. KUHN and R. E. QUANDT, An Experimental Study of the Simplex Method, Proceedings of symposia in applied mathematics, Vol. 15, Amer. Math. Soc, Providence, R.I., 1963. [MR: 161746] [Zbl: 0127.08203] [Google Scholar]
  • 10. W. ORCHARD-HAYS, Advanced Linear Programming Computing Techniques, McGraw-Hill, New York, 1968. [Zbl: 0995.90595] [Google Scholar]
  • 11. J. A. TOMLIN, Pivoting for Size and Sparsity in Linear Programming Inversion Routines, J. Inst. Math, and Appl., Vol. 10, 1972, pp. 289-295. [Zbl: 0249.90039] [Google Scholar]
  • 12. J. A. TOMLIN, LPM1 user's Manual, Systems Optimization Laboratory, Department of Operations Research, Stanford University, 1973. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.