Free Access
RAIRO-Oper. Res.
Volume 13, Number 2, 1979
Page(s) 209 - 216
Published online 06 February 2017
  • 1. J. ABADIE, Application of the GRG Algorithm to Optimal Control Problems, in J. ABADIE, ed., Integer and Nonlinear Programming, North-Holland, Amsterdam, 1970, p. 191-211. [MR: 437059] [Zbl: 0332.90040] [Google Scholar]
  • 2. J. ABADIE, Méthode du Gradient Réduit Généralisé : le code GRGA, Note HI 1756/00, Électricité de France, Paris, février 1975. [Google Scholar]
  • 3. J. ABADIE, The GRG Method for Non-linear Programming, p. 335-362, in H. J. GREENBERG, ed., Design and Implementation of Optimization Software, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1978. [Google Scholar]
  • 4. J. ABADIE, Advances in Non-linear Programming, in K. B. HALEY, ed., Operational Research 78, North-Holland, Amsterdam, 1978, p. 900-930. [MR: 527921] [Google Scholar]
  • 5. J. ABADIE et J. CARPENTIER, Généralisation de la méthode du gradient réduit de Wolfe au cas de contraintes non linéaire, Note HR 6678, Électricité de France Paris, (octobre 1965). [Zbl: 0193.19101] [Google Scholar]
  • 6. J. ABADIE J. CARPENTIER, Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints, in R. FLETCHER, ed., Optimization, Academic Press, London, 1969, p. 37-47. [MR: 284206] [Zbl: 0254.90049] [Google Scholar]
  • 7. J. ABADIE et J. GUIGOU, Gradient Réduit Généralisé, Note HI 069/02, Électricité de France, Paris, avril 1969. [Google Scholar]
  • 8. J. ABADIE et J. GUIGOU, Numerical Experiments with the GRG Method, in J. ABADIE, ed., Integer and Non-linear Programming, North-Holland, Amsterdam, 1970. [MR: 441347] [Zbl: 0331.65041] [Google Scholar]
  • 9. J. ABADIE et A. HAGGAG, Méthode quasi-newtonienne dans une variante du Gradient Réduit Généralisé (GRGAH), Note HI 2458/00, Électricité de France, Paris, août 1977. [Google Scholar]
  • 10. M. AVRIEL, Nonlinear Programming, Prentice-Hall, Englewood Cliffs, New Jersey, 1976. [MR: 489892] [Zbl: 0361.90035] [Google Scholar]
  • 11. C. G. BROYDEN, A new Double-Rank Minimization Algorithm, Notices Amer. Math. Soc, vol. 16, 1969, p. 670. [Google Scholar]
  • 12. A. R. COLVILLE, A Comparative Study on Non-Linear Programming Codes, Rep. 320-2949, N. Y. Scientific Center, IBM Corp, Yorktown Heights, New York, 1968. [Google Scholar]
  • 13. A. R. COLVILLE, Non-Linear Programming Study Results as of June 1970 (private circulation). [Zbl: 0224.90069] [Google Scholar]
  • 14. A. R. COLVILLE, A Comparative Study on Nonlinear Programming codes, in H. W. KUHN, ed., Proceedings of the Princeton Symposium on Mathematical Programming, Princeton University Press, Princeton, New Jersey, 1970. [MR: 325248] [Zbl: 0224.90069] [Google Scholar]
  • 15. W. C. DAVIDON, Variable Metric Method for Minimization, Rep. ANL-5990, Rev. Argonne National Laboratoires, Argonne, 111., 1959. [Google Scholar]
  • 16. D. E. DENNIS et J. J. MORÉ, Quasi Newton Methods, Motivation and Theory, S.I.A.M. Review, vol. 19, (1), 1977, p. 46-89. [MR: 445812] [Zbl: 0356.65041] [Google Scholar]
  • 17. L. C. W. DIXON, The Choice of Step Length, a Crucial Factor in the Performance of Variable Metric Algorithms, in F. LOOTSMA, ed., Numerical Methods for Non-Linear Optimization, Academic Press, London, 1972, p. 149-170. [MR: 378820] [Zbl: 0267.65056] [Google Scholar]
  • 18. R. FLETCHER, A New Approach to Variable Metric Algorithms, Computer J., vol., 13, 1970, p. 317-322. [Zbl: 0207.17402] [Google Scholar]
  • 19. R. FLETCHER et M. J. D. POWELL, A Rapidly Convergent Descent Method for Minimization, Computer J., vol. 6, 1963, p. 163-168. [MR: 152116] [Zbl: 0132.11603] [Google Scholar]
  • 20. R. FLETCHER et C. M. REEVES, Function Minimization by Conjugale Gradients, Computer J., vol. 7, 1964, p. 149-154. [MR: 187375] [Zbl: 0132.11701] [Google Scholar]
  • 21. D. GOLDFARB, A Family of Variable Metric Methods Derived by Variational Means, Math. Comp. vol. 24, 1970, p. 23-26. [MR: 258249] [Zbl: 0196.18002] [Google Scholar]
  • 22. A. H. HAGGAG, Études d'algorithmes d'optimisation non linéaires : une variante de GRGA, These, C.N.R.S. n° TD493, 6-12-76, Université Pierre-et-Marie-Curie, Paris, 1976. [Google Scholar]
  • 23. D. M. HIMMELBLAU, A Uniform Evaluation of Unconstrained Optimization Techniques, in F. A. LOOTSMA, ed., Numerical Methods for Nonlinear Optimization, Academic Press, London, 1972, p. 69-97. [MR: 375771] [Zbl: 0267.65053] [Google Scholar]
  • 24. D. M. HIMMELBLAU, Applied Nonlinear Programming, McGraw-Hill, New York, 1972. [Zbl: 0241.90051] [Google Scholar]
  • 25. F. A. LOOTSMA, Performance Evaluation of Non-Linear Program Codes from the Viewpoint of a Decision Maker, Paper presented at the IFIP WG 2.5 Working Conference on Performance Evaluation on Numerical Software, Baden (Austria),11-15 December 1978, and at the 5th Conference on Mathematical Programming, Matrafüred (Hungary), 22-26 January 1979. [Google Scholar]
  • 26. E. SANDGREN, The Utility of Nonlinear Programming Algorithms, Ph. D. Thesis, Purdue University, December 1977. [Google Scholar]
  • 27. D. F. SHANNO, Conditioning of Quasi-Newton Methods for Function Minimization, Mathematics of Computation, vol. 24, 1970, p. 617-656. [MR: 274029] [Zbl: 0225.65073] [Google Scholar]
  • 28. R. L. STAHA, Constrained Optimization via Moving Exterior Truncations, Ph. D. Thesis, The University of Texas at Austin, May 1973. [MR: 2623273] [Google Scholar]
  • 29. K. SCHITTKOWSKI, A Numerical Comparison of 13 Nonlinear Programming Codes with Randomly Generated Test Problems, to appear in : L. C. W. DIXON and G. P. SZEGO, eds, Numerical Optimisation of Dynamical Systems, North-Holland Publishing Company, Amsterdam, 1979. [MR: 605693] [Zbl: 0454.65048] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.