Free Access
RAIRO-Oper. Res.
Volume 13, Number 2, 1979
Page(s) 209 - 216
Published online 06 February 2017
  • 1. J. ABADIE, Application of the GRG Algorithm to Optimal Control Problems, in J. ABADIE, ed., Integer and Nonlinear Programming, North-Holland, Amsterdam, 1970, p. 191-211. [MR: 437059] [Zbl: 0332.90040]
  • 2. J. ABADIE, Méthode du Gradient Réduit Généralisé : le code GRGA, Note HI 1756/00, Électricité de France, Paris, février 1975.
  • 3. J. ABADIE, The GRG Method for Non-linear Programming, p. 335-362, in H. J. GREENBERG, ed., Design and Implementation of Optimization Software, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1978.
  • 4. J. ABADIE, Advances in Non-linear Programming, in K. B. HALEY, ed., Operational Research 78, North-Holland, Amsterdam, 1978, p. 900-930. [MR: 527921]
  • 5. J. ABADIE et J. CARPENTIER, Généralisation de la méthode du gradient réduit de Wolfe au cas de contraintes non linéaire, Note HR 6678, Électricité de France Paris, (octobre 1965). [Zbl: 0193.19101]
  • 6. J. ABADIE J. CARPENTIER, Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints, in R. FLETCHER, ed., Optimization, Academic Press, London, 1969, p. 37-47. [MR: 284206] [Zbl: 0254.90049]
  • 7. J. ABADIE et J. GUIGOU, Gradient Réduit Généralisé, Note HI 069/02, Électricité de France, Paris, avril 1969.
  • 8. J. ABADIE et J. GUIGOU, Numerical Experiments with the GRG Method, in J. ABADIE, ed., Integer and Non-linear Programming, North-Holland, Amsterdam, 1970. [MR: 441347] [Zbl: 0331.65041]
  • 9. J. ABADIE et A. HAGGAG, Méthode quasi-newtonienne dans une variante du Gradient Réduit Généralisé (GRGAH), Note HI 2458/00, Électricité de France, Paris, août 1977.
  • 10. M. AVRIEL, Nonlinear Programming, Prentice-Hall, Englewood Cliffs, New Jersey, 1976. [MR: 489892] [Zbl: 0361.90035]
  • 11. C. G. BROYDEN, A new Double-Rank Minimization Algorithm, Notices Amer. Math. Soc, vol. 16, 1969, p. 670.
  • 12. A. R. COLVILLE, A Comparative Study on Non-Linear Programming Codes, Rep. 320-2949, N. Y. Scientific Center, IBM Corp, Yorktown Heights, New York, 1968.
  • 13. A. R. COLVILLE, Non-Linear Programming Study Results as of June 1970 (private circulation). [Zbl: 0224.90069]
  • 14. A. R. COLVILLE, A Comparative Study on Nonlinear Programming codes, in H. W. KUHN, ed., Proceedings of the Princeton Symposium on Mathematical Programming, Princeton University Press, Princeton, New Jersey, 1970. [MR: 325248] [Zbl: 0224.90069]
  • 15. W. C. DAVIDON, Variable Metric Method for Minimization, Rep. ANL-5990, Rev. Argonne National Laboratoires, Argonne, 111., 1959.
  • 16. D. E. DENNIS et J. J. MORÉ, Quasi Newton Methods, Motivation and Theory, S.I.A.M. Review, vol. 19, (1), 1977, p. 46-89. [MR: 445812] [Zbl: 0356.65041]
  • 17. L. C. W. DIXON, The Choice of Step Length, a Crucial Factor in the Performance of Variable Metric Algorithms, in F. LOOTSMA, ed., Numerical Methods for Non-Linear Optimization, Academic Press, London, 1972, p. 149-170. [MR: 378820] [Zbl: 0267.65056]
  • 18. R. FLETCHER, A New Approach to Variable Metric Algorithms, Computer J., vol., 13, 1970, p. 317-322. [Zbl: 0207.17402]
  • 19. R. FLETCHER et M. J. D. POWELL, A Rapidly Convergent Descent Method for Minimization, Computer J., vol. 6, 1963, p. 163-168. [MR: 152116] [Zbl: 0132.11603]
  • 20. R. FLETCHER et C. M. REEVES, Function Minimization by Conjugale Gradients, Computer J., vol. 7, 1964, p. 149-154. [MR: 187375] [Zbl: 0132.11701]
  • 21. D. GOLDFARB, A Family of Variable Metric Methods Derived by Variational Means, Math. Comp. vol. 24, 1970, p. 23-26. [MR: 258249] [Zbl: 0196.18002]
  • 22. A. H. HAGGAG, Études d'algorithmes d'optimisation non linéaires : une variante de GRGA, These, C.N.R.S. n° TD493, 6-12-76, Université Pierre-et-Marie-Curie, Paris, 1976.
  • 23. D. M. HIMMELBLAU, A Uniform Evaluation of Unconstrained Optimization Techniques, in F. A. LOOTSMA, ed., Numerical Methods for Nonlinear Optimization, Academic Press, London, 1972, p. 69-97. [MR: 375771] [Zbl: 0267.65053]
  • 24. D. M. HIMMELBLAU, Applied Nonlinear Programming, McGraw-Hill, New York, 1972. [Zbl: 0241.90051]
  • 25. F. A. LOOTSMA, Performance Evaluation of Non-Linear Program Codes from the Viewpoint of a Decision Maker, Paper presented at the IFIP WG 2.5 Working Conference on Performance Evaluation on Numerical Software, Baden (Austria),11-15 December 1978, and at the 5th Conference on Mathematical Programming, Matrafüred (Hungary), 22-26 January 1979.
  • 26. E. SANDGREN, The Utility of Nonlinear Programming Algorithms, Ph. D. Thesis, Purdue University, December 1977.
  • 27. D. F. SHANNO, Conditioning of Quasi-Newton Methods for Function Minimization, Mathematics of Computation, vol. 24, 1970, p. 617-656. [MR: 274029] [Zbl: 0225.65073]
  • 28. R. L. STAHA, Constrained Optimization via Moving Exterior Truncations, Ph. D. Thesis, The University of Texas at Austin, May 1973. [MR: 2623273]
  • 29. K. SCHITTKOWSKI, A Numerical Comparison of 13 Nonlinear Programming Codes with Randomly Generated Test Problems, to appear in : L. C. W. DIXON and G. P. SZEGO, eds, Numerical Optimisation of Dynamical Systems, North-Holland Publishing Company, Amsterdam, 1979. [MR: 605693] [Zbl: 0454.65048]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.