Free Access
Issue
RAIRO-Oper. Res.
Volume 13, Number 3, 1979
Page(s) 275 - 301
DOI https://doi.org/10.1051/ro/1979130302751
Published online 06 February 2017
  • 1. G. C. ARMOUR et E. S. BUFFA, A Heuristic Algorithm and Simulative Approach to Relative Location of Facilities, Management Science, vol. 9, janvier 1963, p. 294-309. [Google Scholar]
  • 2. F. BROECKX et L. KAUFMAN, An Algorithm for the Q.A. Problem Using Bender's Decomposition, Papers fairs, Euro II, Stockholm, novembre 1976. [Google Scholar]
  • 3. R. E. BURKARD, Die Störungsmethode zur Lösung quadratischer Zuordnungsprobleme, Op. Res. Verf. 16, 1973, p. 34-108; [Zbl: 0279.90029] [Google Scholar]
  • R. E. BURKARD Quadratic assignment problems: suboptimal methods, Summer School in Combinatorial Optimization, SOGESTA, Urbino, Italy 1978; [Zbl: 0607.90026] [Google Scholar]
  • R.E. BURKARD et J. OFFERMAN, Entwurf von Schreibmaschintastatwen mittels quadratischer Zuordnungsprobleme, Op. Res. 21, 1977, p. 121-132. [Zbl: 0353.90095] [Google Scholar]
  • 4. R. FAURE, Une heuristique efficace : la notion de regret en Recherche Opérationnelle, Polskie Toutargustwo Cybernetyczne, Referaty na III Symposium p.n. Methody Henrizy, 25, Wresnia 1976, p. 55-93. [Google Scholar]
  • 5. R. FAURE, C. ROUCAIROL et P. TOLLA, Chemins, flots et ordonnancements, Recherche Opérationnelle Appliquée, t. 1, Collection Programmation, Gauthier-Villars, Paris 1976. [MR: 449462] [Zbl: 0349.90126] [Google Scholar]
  • 6. G. K. GASCHUTZ et J. H. AHRENS, Suboptimal Algorithms for the Quadratic Assignment Problem, Naval Research Logistics Quaterly, vol. 15, mars 1968, p. 49-62. [Google Scholar]
  • 7. J. W. GAVETT et N. V. PLYTER, The Optimal Assignment of Facilities to Locations by Branch and Bound, Operations Research, vol. 14, mars-avril 1966, p. 210-232. [Google Scholar]
  • 8. P. C. GILMORE, Optimal and Suboptimal Algorithms for the Quadratic Assignment Problem, S.I.A.M. J., vol. 10, juin 1962. p. 305-313. [MR: 172696] [Zbl: 0118.15101] [Google Scholar]
  • 9. G. W. GRAVES et A. B. WHINSTON, An Algorithm for the Quadratic Assignment Problem, Integer and non linear programming, p. 473-496, North Holland Publishing Company, J. ABADIE, éd.. 1970. [MR: 437054] [Zbl: 0334.90037] [Google Scholar]
  • 10. F. S. HILLIER et M. M. CONNORS, Quadratic Assignment Problem Algorithms and the Location of Indivisible Facilities, Management Science, vol. 13, septembre 1966, p. 42-57. [Google Scholar]
  • 11. T. C. KOOPMANS et M. BECKMANN, Assignment Problems and the Location of Economic Activities, Econometrica, vol. 25,janvier 1957, p. 53-76. [MR: 89106] [Zbl: 0098.12203] [Google Scholar]
  • 12. H. W. KUHN, The Hungarian Method for Assignment Problems, Nav. Res. Logist. Quart., vol. 2, 1955. [MR: 75510] [Zbl: 0143.41905] [Google Scholar]
  • 13. E. L. LAWLER, The Quadratic Assignment Problem, Management Science, vol. 9, juillet 1963, p. 586-599. [MR: 152361] [Zbl: 0995.90579] [Google Scholar]
  • 14. H. MULLER-MERBACH, Operations Research, p. 313-320, Verlag Wahlen, München, 1973. [MR: 386626] [Zbl: 0205.21501] [Google Scholar]
  • 15. C. E. NUGENT, T. E. VOLLMAN et J. RUML, An Experimental Comparison of Techniques for the Assignment of Facilities to Locations, Operations Research, vol. 16, janvier-février 1968, p. 150-173. [Google Scholar]
  • 16. J. F. PIERCEet W. B. CROWSTON, Tree Seach Algorithms for Quadratic Assignment Problems. Naval Research Logistics Quaterly, vol. 18, 1971, p. 1-36. [Zbl: 0216.54404] [Google Scholar]
  • 17. C. ROUCAIROL, Affectation quadratique, Thèse de 3e cycle, Université Paris-VI, octobre 1976. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.