Free Access
RAIRO-Oper. Res.
Volume 15, Number 3, 1981
Page(s) 287 - 296
Published online 06 February 2017
  • 1. K. J. ARROW, Social Choice and Individual Values, 2nd ed., New York, Wiley, 1973. [Zbl: 0984.91513] [Google Scholar]
  • 2. D. BLACK, The Theory of Committees and Elections, Cambridge, England, Cambridge University Press, 1958. [Zbl: 0091.15706] [Google Scholar]
  • 3. J.-Ch. de BORDA, Mémoire sur les élections au scrutin, Histoire de l'Académie Royale des Sciences, 1781. [Google Scholar]
  • 4. J. R. CHAMBERLIN and M. D. COHEN, Towards Applicable Social Choice Theory: A Comparison of Social Choice Functions Under Spatial Model Assumptions, The American Political Science Review, Vol. 72, 1978, pp. 1341-1356. [Google Scholar]
  • 5. Marquis de CONDORCET, Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix, Paris, 1785. [Google Scholar]
  • 6. P. C. FISHBUR, The Theory of Social Choice, , Princeton, New Jersey, Princeto University Press, 1973. [MR: 386742] [Zbl: 0253.92006] [Google Scholar]
  • 7. P. C. FISHBURN, Simple Voting Systems and Majority Rule, Behavioral ScienceVol. 19, 1974, pp, 166-176 [Google Scholar]
  • 8. P. C FISHBUR, Aspects of One-Stage Voting Rules, Management Science, Vol. 21 1974, pp. 422-427 [Google Scholar]
  • 9. P. C FISHBURN and W. V. GEHRLEIN, An Analysis of Simple Two-Stage VotinSystems, Behavioral Science, Vol. 21, 1976, pp. 1-12. [Google Scholar]
  • 10. P. C. FISHBURN and W. V. GEHRLEIN, An Analysis of Voting Procedures with NonRanked Voting, Behavioral Science, Vol. 22, 1977, pp. 178-185 [Google Scholar]
  • 11. P. C. FISHBURN and W. V. GEHRLEIN, Borda's Rule, Positional Voting, and Condorcet's Simple Majority Principle, Public Choice, Vol. 28, 1976, pp, 79-88. [MR: 433537] [Google Scholar]
  • 12. W. V. GEHRLEIN, The Examination of a Voter Paradox With Linear Programming, Proceedings of the American Institute of Decision Sciences Meeting, 1976. [Google Scholar]
  • 13. W. V. GEHRLEIN, Condorcet Efficiency and Constant Scoring Rules, Mathematical Social Sciences, forthcominy. [Zbl: 0479.90015] [Google Scholar]
  • 14. W. V. GEHRLEIN, Single Stage Election Procedures For Large Electorales, Journal of Mathematical Economics, forthcoming. [MR: 631008] [Zbl: 0461.90005] [Google Scholar]
  • 15. W. V. GEHRLEIN and P. C. FISHBURN, Coincidence Probabilities for Simple Majorityand Positional Voting Rules, Social Science Research, Vol. 7, 1978, pp. 272-283. [Google Scholar]
  • 16. W. V. GEHRLEIN and P. C. FISHBURN, Probababilities of Election Outcomes for LargeElectorates, Journal of Economic Theory, Vol. 19, 1978, pp. 38-49 [Zbl: 0399.90007] [Google Scholar]
  • 17. W. V. GEHRLEIN and P. C. FISHBURN, Constant Scoring Rules for Selecting One Among Many Alternative, Quality and Quantity, Vol. 15, 1981, pp. 203-210. [Google Scholar]
  • 18. G. H. KRAMER, On a Class of Equilibrium Functions for Majority Rules, Econometrica, Vol. 41, 1973, pp. 285-297. [MR: 327327] [Zbl: 0262.90005] [Google Scholar]
  • 19. D. C. PARIS, Plurality Distortion and Majority Rule, Behavioral Science, Vol. 20, 1975, pp. 125-133. [Google Scholar]
  • 20. C. R. PLOTT, A Notion of Equilibrium and its Possibility Under Majority Rule, American Economic Review, Vol. 57, 1967, pp. 787-806. [Google Scholar]
  • 21. M. SATTERTHWAITE, Coalition Constructing Voting Procedures, Mimeograph presented at Public Choice Society Meeting, Pittsburgh, Pennsylvania, 1972. [Google Scholar]
  • 22. S. M. SELBY, Standard Mathematical Tables, 14th ed., Cleveland, Ohio, Chemical Rubber Company, 1965. [Zbl: 0086.33303] [Google Scholar]
  • 23. A. K. SEN, Collective Choice and Social Welfare, San Francisco, California, Holden-Day, 1970. [Zbl: 0227.90011] [Google Scholar]
  • 24. D. SLEPIAN, The One Sided Barrier Problem for Gaussian Noise, Bell Systems Technical Journal, Vol. 41, 1962, pp. 463-501. [MR: 133183] [Google Scholar]
  • 25. J. H. SMITH, Aggregation of Preferences with Variable Electorale, Econometrica, Vol. 41, 1973, pp. 1027-1041. [MR: 441227] [Zbl: 0286.90008] [Google Scholar]
  • 26. S. S. WILKS, Mathematical Statistics, Wiley, New York, 1962. [MR: 144404] [Zbl: 0173.45805] [Google Scholar]
  • 27. H. P. YOUNG, An Axiomatization of Borda's Rule, Journal of Economic Theory, Vol. 9, 1974, pp. 43-52. [MR: 496492] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.