Free Access
Issue
RAIRO-Oper. Res.
Volume 16, Number 3, 1982
Page(s) 175 - 217
DOI https://doi.org/10.1051/ro/1982160301751
Published online 06 February 2017
  • 1. E. BALAS, Machine Sequencing via Disjunctive Graph : an Implicit Enumeration algorithm, Operation Research, vol. 17, n° 6, 1969. [MR: 250770] [Zbl: 0183.49404] [Google Scholar]
  • 2. K. A. BAKER, Introduction to Sequencing and Scheduling, John Wiley and sons, 1974. [Google Scholar]
  • 3. K. A. BAKER et Z. S. SU, Sequencing with Due-Dates and Early Start-Times to Minimize Maximum Tardiness, Naval Research Logistic Quarterly, vol. 21, mars 1974, p. 171-176. [MR: 343892] [Zbl: 0277.90044] [Google Scholar]
  • 4. P. BRATLEY, M. FLORIAN et P. ROBILLARD, On Sequencing with Earliest Start and Due-dates with Applications to Calculations of Bounds for the (n, m, G/Fmax) Problem, Naval Research Logistic Quarterly, 1979, p. 20-57. [MR: 411599] [Zbl: 0256.90027] [Google Scholar]
  • 5. J. BRUNO, E. G. COFFMAN et R. SETHI, Algorithms for Minimizing Mean Flow Time, Proceedings, IFIPS Congress, North Holland Publishing Company août 1974, p. 504-510. [MR: 418893] [Zbl: 0297.68048] [Google Scholar]
  • 6. J. BRUNO et R. SETHI, On the Complexity of Mean Flow Time Scheduling, Technical Report, Computer Science Dept, Pennsylvania State University, 1975. [Zbl: 0402.90046] [Google Scholar]
  • 7. J. BRUNO, E. G. COFFMAN et R. SETHI, Scheduling Independant Tasks to Reduce Mean Finishing Time, Communications of the A.C.M., vol. 17, n° 7, 1974. [MR: 356869] [Zbl: 0283.68039] [Google Scholar]
  • 8. J. CARLIER, Ordonnancements à contraintes disjonctives, R.A.I.R.O., vol. 12, n° 4, novembre 1978. [EuDML: 104705] [MR: 516514] [Zbl: 0401.90052] [Google Scholar]
  • 9. J. CARLIER, Financement et ordonnancements, Rapport de recherche, IP n° 78-8, Paris-VI, 1978. [Google Scholar]
  • 10. J. CARLIER, Problème à une machine, EURO-IV, Cambridge, 1980; Rapport IP n° 80-3, Paris-VI. [Google Scholar]
  • 11. E. G. COFFMAN et R. L. GRAHAM, Optimal Scheduling for two Processor systems, Acta Informatica, vol. 1, n° 3, 1972, p. 200-213. [MR: 334913] [Zbl: 0248.68023] [Google Scholar]
  • 12. E. G. COFFMAN, Computer and Job-Shop Scheduling Theory, John Wiley and Sons, 1976. [MR: 629691] [Zbl: 0359.90031] [Google Scholar]
  • 13. R. W. CONWAY, W. L. MAXWELL et L. W. MILLER, Theory of Scheduling, Addison Wesley, Reading, Mass., 1967. [MR: 389180] [Zbl: 1058.90500] [Google Scholar]
  • 14. J. ERSCHLER, G. FONTAN et F. ROUBELLAT, Potentiels sur un graphe non conjonctif et analyse d'un problème d'ordonnancement à moyens limités, R.A.I.R.O., vol. V-13, n° 4, 1979, p. 363. [EuDML: 104740] [MR: 553270] [Zbl: 0424.90033] [Google Scholar]
  • 15. R. FAURE, C. ROUCAIROL et P. TOLLA, Chemins, Flots et ordonnancements, Gauthier-Villars, 1976. [MR: 449462] [Google Scholar]
  • 16. M. R. GAREY et D. S. JOHNSON, Computers and Intractability: a Guide to the Theory of NP-Completeness, W. H. Freeman, San Francisco, California, 1978. [MR: 519066] [Zbl: 0411.68039] [Google Scholar]
  • 17. M. R. GAREY, D. S. JOHNSON et R. SETHI, The Complexity of Flow-Shop and Job-shop Scheduling, Technical Report, n° 168, Computer Science Dept, Pennsylvania State University, 1975. [Zbl: 0396.90041] [Google Scholar]
  • 18. R. L. GRAHAM, Bounds for Certain Multiprocessing Anomalies, Bell Systems Technical Journal, vol. 45, 1966, p. 1563-1581. [Zbl: 0168.40703] [Google Scholar]
  • 19. R. L. GRAHAM, Bounds for Certain Timing Anomalies, S.I.A.M. Journal on Applied Mathematics, vol. 17, n° 2, 1969, p. 416-419. [Google Scholar]
  • 20. R. L. GRAHAM, E. L. LAWLER, J. K. LENSTRA et A. H. G. RINNOY KAN, Optimization and Approximation in Deterministic Sequencing, Proceedings of DO 77, Vancouver. [Zbl: 0411.90044] [Google Scholar]
  • 21. W. A. HORN, Single Machine Job Sequencing with Tree-Like Precedence Ordering and Linear Delay Penalties, S.I.A.M. Journal on Applied Mathematics, vol. 23, 1972, p. 189-202. [MR: 421652] [Zbl: 0224.90025] [Google Scholar]
  • 22. T. C. HU, Parallel Sequencing and Assembly Line Problems, Operations Research, vol. 9, n° 6, 1961, p. 841-848. [MR: 135614] [Google Scholar]
  • 23. S. M. JOHNSON, Optimal Two and Three Stage Production Schedules, Naval Research Logistic Quarterly, vol. 1, n° 1, 1954. [Google Scholar]
  • 24. M. T. KAUFMAN, An almost Optimal Algorithm for the Assembly Line Scheduling Problem, I.E.E.E. Transactions on Computers, vol. TC-74, 1974, p. 1169-1174. [MR: 391939] [Zbl: 0288.68026] [Google Scholar]
  • 25. A. KAUFMAN et G. DESBAZEILLE, La méthode du chemin critique, Dunod, Paris, 1966. [Zbl: 0127.37001] [Google Scholar]
  • 26. J. LABETOULLE et E. L. LAWLER, On Preemptive Scheduling of Unrelated Parallel Processors, J.A.C.M. (à paraître). [Zbl: 0388.68027] [Google Scholar]
  • 27. J. LABETOULLE, E. L. LAWLER et A. H. G. RINNOY KAN, Preemptive Scheduling of Uniform Machines Subject to Release dates (à paraître). [Zbl: 0554.90059] [Google Scholar]
  • 28. E. L. LAWLER et J. M. MOORE, A Functional Equation and its Application to Resource Allocation and Sequencing Problems, Management Science, vol. 16, n° 1, septembre 1969, p. 77-84. [Zbl: 0184.23303] [Google Scholar]
  • 29. B. J. LAGEWEG, J. K. LESTRA et A. H. G. RINNOY KAN, Minimizing Maximum Lateness on one Machine: Computational Experience and some Applications, Statistica Neerlandica, vol. 30, 1976, p. 25-41. [MR: 434397] [Zbl: 0336.90029] [Google Scholar]
  • 30. J. K. LENSTRA Sequencing by Enumerative Methods, Mathematical Centre Tract, 69, Mathematical Centrum, Amsterdam, 1977. [MR: 443968] [Zbl: 0407.90025] [Google Scholar]
  • 31. S. LIN, Computer Solutions to the Traveling Salesman Problem, Bell Systems Technical Journal, vol. 44, n° 10, 1965, p. 2245-2269. [MR: 189224] [Zbl: 0136.14705] [Google Scholar]
  • 32. R. R. MUNTZ et E. G. COFFMAN, Preemptive Scheduling of Real Time Tasks on Multiprocessor Systems, Journal de l'A.C.M., vol. 17, n° 2, 1970, p. 324-338. [MR: 282644] [Zbl: 0216.49702] [Google Scholar]
  • 33. R. R. MUNTZ et E. G. COFFMAN, Optimal Preemptive Scheduling on Processor Systems, I.E.E.E. Transactions on Computers, vol. C-18, n° 11, 1969, p. 1014-1020. [Zbl: 0184.20504] [Google Scholar]
  • 34. NEPOMIASTCHY, Résolution d'un problème d'ordonnancement à ressources variables, R.A.I.R.O., vol. V-12, n° 3, août 1978. [EuDML: 104694] [Zbl: 0383.60108] [Google Scholar]
  • 35. A. H. G. RINNOY-KAN, Machine Scheduling Problem: Classification, Complexity and Computations, Nyhoff, The Hague, 1976. [Zbl: 0309.90026] [Google Scholar]
  • 36. B. ROY, Algèbre moderne et théorie des graphes, Tome II, Paris, Dunod, 1970. [Zbl: 0238.90073] [MR: 260413] [Google Scholar]
  • 37. B. ROY, Cheminements et connexité dans les graphes, applications aux problèmes d'ordonnancement, revue METRA, vol. 62, série spéciale, n° 1, 1962. [Google Scholar]
  • 38. B. ROY et M. C. PORTMANN, Les problèmes d'ordonnancement, applications et méthodes, Cahier du LAMSADE, Université Paris-9, 1979. [Google Scholar]
  • 39. S. K. SAHNI, Algorithms for Scheduling Independant Tasks, Journal de l'A.C.M., vol. 23, n° 1, janvier 1976, p. 116-127. [MR: 434399] [Zbl: 0326.68024] [Google Scholar]
  • 40. L. SCHRAGE, Solving Resource-Constrained Network Problems by Implicit Enumeration: Preemptive Case, Operations Research, vol. 20, n° 3, 1972, p. 668-677. [Zbl: 0241.90019] [Google Scholar]
  • 41. R. SLOWINSKY, Multiobjective Network Scheduling with Efficient Use of Renewable and Non-Renewable Resources, European Journal of Operational Research, vol. 5, 1980. [Zbl: 0455.90049] [Google Scholar]
  • 42. J. D. ULLMAN, Polynomial Complete Scheduling Problems, Operating Systems Review, vol. 7, n° 4, 1973, p. 96-101. [Zbl: 0313.68054] [Google Scholar]
  • 43. H. WAGNER, Principles of Operations Research with Applications to Managerial Decisions, p. 185-187, Prentice-Hall, 1969. [MR: 353966] [Zbl: 0193.18402] [Google Scholar]
  • 44. J. WEGLARZ, Project Scheduling with Continously Divisible, Doubly Constrained Resources, Management Science, 1981, (à paraître). [Zbl: 0467.90033] [Google Scholar]
  • 45. B. SIMMONS, A Fast Algorithm for Simple Processor Scheduling, 19th annual symposium on Fondations of Computer Science, octobre 1978, p. 246-251. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.