Free Access
Issue |
RAIRO-Oper. Res.
Volume 19, Number 1, 1985
|
|
---|---|---|
Page(s) | 27 - 33 | |
DOI | https://doi.org/10.1051/ro/1985190100271 | |
Published online | 06 February 2017 |
- 1. B. C. ARNOLD et R. A. GROENEVELD, Bounds on Expectations of Linear Systematic Statistics Based on Dependent Samples, The Annals of Statistics, vol. 7, n°1, 1979, p. 220-223. [MR: 515696] [Zbl: 0398.62036] [Google Scholar]
- 2. S. E. ELMAGHRABY, On the Expected Duration of PERT Type Networks, Management Science, vol. 13, n° 5, 1967, p. 229-306. [Zbl: 0158.38303] [Google Scholar]
- 3. S. E. ELMAGHRABY, Activity Networks, John Wiley and Sons, Inc., New York, 1977. [Zbl: 0385.90076] [Google Scholar]
- 4. D. R. FULKERSON, Expected Critical Path Lengths in PERT Networks, Operations Research, vol. 10, n° 6, 1962, p. 808-817. [Zbl: 0124.36304] [Google Scholar]
- 5. H. O. HARTLEY et A. W. WORTHAM, A Statistical Theory for PERT Critical Path Analysis, Management Science, vol 12, n° 10, 1966, p. 469-481. [Zbl: 0139.13607] [Google Scholar]
- 6. M. B. GARMAN, More on Conditional Sampling in the Simulation of Stochastic Networks, Management Science, vol. 19, n° 1, 1972, p. 90-95. [Zbl: 0241.90022] [Google Scholar]
- 7. K. R. MACCRIMMON et C. A. RYAVEC, An Analytical Study of the PERT Assumptions Operations Research, vol.12, n° 1, 1964, p. 16-37. [Google Scholar]
- 8. P. G. MALCOLM, J. H. ROSEBOOM, C. E. CLARK et W. FAZAR, Application of a Technique for Research and Development, Operations Research, vol. 7, n° 5, 1959, p. 646-669. [Zbl: 1255.90070] [Google Scholar]
- 9. J. J. MARTIN, Distribution of Time Through a Directed, Acyclic Network, Operations Research, vol. 13, n° 1, 1965, p. 46-66. [MR: 191650] [Zbl: 0137.39302] [Google Scholar]
- 10. J. P. MELIN, Proposition d'une Solution Approchée pour l'Étude du Maximum de Plusieurs Variables Aléatoires, R.A.I.R.O.-Rech. Op., vol. 17, n° 2, 1983, p. 175-191. [EuDML: 104832] [Zbl: 0519.90045] [Google Scholar]
- 11. P. ROBILLARD et M. TRAHAN, Expected Completion Time in PERT Networks, Operations Research, vol. 24, n° 1, 1976, p. 177-182. [MR: 406447] [Zbl: 0324.90025] [Google Scholar]
- 12. P. ROBILLARD et M. TRAHAN, The Completion Time of PERT Networks, Operations Research, vol. 25, n° 1, 1977, p. 15-29. [Zbl: 0363.68053] [Google Scholar]
- 13. B. ROY, Algèbre Moderne et Théorie des Graphes, Dunod, Paris, 1970. [Zbl: 0238.90073] [MR: 260413] [Google Scholar]
- 14. D. SCULLY, The Completion Time of PERT Networks, J. Operational Research Society, vol. 34, n° 2, 1983, p. 155-158. [Zbl: 0502.90045] [Google Scholar]
- 15. A. W. SHOGAN, Bounding Distributions for a Stochastic PERT Network, Networks, vol. 7, n° 4, 1977, p. 359-381. [MR: 496579] [Zbl: 0366.94042] [Google Scholar]
- 16. R. M. VAN SLYKE, Monte Carlo Methods and the PERT Problem, Operations Research, vol. 11, n° 5, 1963, p. 839-860. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.