Free Access
Issue
RAIRO-Oper. Res.
Volume 19, Number 1, 1985
Page(s) 71 - 86
DOI https://doi.org/10.1051/ro/1985190100711
Published online 06 February 2017
  • 1. E. V. DENARDO and B. Fox, Muitichain Markov Renewal Programs, S.I.A.M. J. Appl. Math., Vol. 16, 1968, pp. 468-487. [MR: 234721] [Zbl: 0201.19303] [Google Scholar]
  • 2. E.V. DENARDO, Markov Renewal Programs with Small Interest Rates, Ann. Math. Statist., Vol. 42, 1971, pp. 477-496. [MR: 290784] [Zbl: 0234.60106] [Google Scholar]
  • 3. J. DOOB, Stochastic Processes, Wiley, New York, 1953. [MR: 58896] [Zbl: 0696.60003] [Google Scholar]
  • 4. N. FURUKAWA, Markovian Decision Processes with Compact Action Spaces, Ann. Math. Statist., Vol. 43, 1972, pp. 1612-1622. [MR: 371418] [Zbl: 0277.90083] [Google Scholar]
  • 5. A. HORDIJK, A Sufficient Condition for the Existence of an Optimal Policy with Respect to the Average Cost Criterion in Markovian Decision Processes, Transactions Sixth Prague Conf. on Information Theory, Statistical Decision Functions, Random Processes. Academia, Prague, 1971, pp. 263-274. [MR: 368792] [Zbl: 0291.90072] [Google Scholar]
  • 6. A. HORDIJK, Dynamic Programming and Markov Potential Theory, Mathematical Centre Tract, Vol. 51, Amsterdam, 1974. [MR: 432227] [Zbl: 0284.49012] [Google Scholar]
  • 7. R. A. HOWARD, Dynamic Programming and Markov Processes, Wiley, New York, 1960. [MR: 118514] [Zbl: 0091.16001] [Google Scholar]
  • 8. A. MAITRA, Discounted Dynamic Programming on Compact Metric Spaces, Sankhya, Sec. A, Vol. 30, 1968, pp. 211-216. [MR: 237172] [Zbl: 0187.17702] [Google Scholar]
  • 9. B. L. MILLER and A. F. Jr. VEINOTT, Discrete Dynamic Programming with a Small Interest Rate, Ann. Math. Statist., Vol. 40, 1969, pp. 366-370. [MR: 238561] [Zbl: 0175.47302] [Google Scholar]
  • 10. M. SCHAL, Stationary Policies in Dynamic Programming Models Under Compactness Assumptions, Math, of O.R., Vol. 8, 1983, pp. 366-372. [MR: 716118] [Zbl: 0533.90093] [Google Scholar]
  • 11. P. SCHWEITZER, Perturbation Theory and Finite Markov Chains, J. Appl. Prob., Vol. 5, 1968, pp. 401-413. [MR: 234527] [Zbl: 0196.19803] [Google Scholar]
  • 12. P. J. SCHWEITZER, On the Solvability of Bellman's Functional Equations for Markov Renewal Programming, J. Math. Anal. Appl, Vol. 96, 1983, pp. 13-23. [MR: 717490] [Zbl: 0526.90094] [Google Scholar]
  • 13. P. J. SCHWEITZER, On the Existence of Relative Values for Undiscounted Markovian Decision Processes with a Scalar Gain Rate, University of Rochester, Graduate School of Management, Working Paper Series No. QM8225, December 1982. To appear in J. Math. Anal. Appl. [MR: 765040] [Zbl: 0598.90091] [Google Scholar]
  • 14. P. J. SCHWEITZER, Solving MDP Functional Equations by Lexicographie Optimization, Revue Française d'Automatique et de Recherche Operationnelle, Vol. 16, 1982, pp. 91-98. [EuDML: 104808] [MR: 679631] [Zbl: 0485.90085] [Google Scholar]
  • 15. P. J. SCHWEITZER and A. FEDERGRUEN, The Functional Equations of Undiscounted Markov Renewal Programming, Math. of Operations Research, Vol. 3, 1978, pp. 308-322. [MR: 509667] [Zbl: 0388.90083] [Google Scholar]
  • 16. S. S. SHEU and K.-J. FARN, A Sufficient Condition for the Existence of a Stationary 1-Optimal Plan in Compact Action Markovian Decision Processes, in Recent Developments in Markov Decision Processes, R. HARTLEY, L. C. THOMAS and D. J. WHITE Eds., Academic Press, London, 1980, pp. 111-126. [Google Scholar]
  • 17. A. F. Jr. VEINOTT, On Finding Optimal Policies in Discrete Dynamic Programming with no Discounting, Ann. Math. Statist., Vol. 37, 1966, pp. 1284-1294. [MR: 208992] [Zbl: 0149.16301] [Google Scholar]
  • 18. A. F. Jr. VEINOTT, Discrete Dynamic Programming with Sensitive Discount Optimality Criteria, Ann. Math. Statist., Vol 40, 1969, pp. 1635-1660. [MR: 256712] [Zbl: 0183.49102] [Google Scholar]
  • 19. A. HORDIJK and M. L. PUTERMAN, On the Convergence of Policy Iteration in Finite State Average Reward Markov Decision Processes ; the Unichain Case, Working Paper No. 948, Faculty of Commerce and Business Administration, University of British Columbia, Vancouver, British Columbia, May 1983. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.