Free Access
Issue
RAIRO-Oper. Res.
Volume 19, Number 1, 1985
Page(s) 105 - 111
DOI https://doi.org/10.1051/ro/1985190101051
Published online 06 February 2017
  • 1. D. BLACKWELL, Comparison of Experiments, Proc. Sec.Berkeley Symp. on Math. Stat. and Probability, University California Press, 1951, pp. 93-102. [MR: 46002] [Zbl: 0044.14203] [Google Scholar]
  • 2. GARCIA-CARRASCO, Criterios para la comparación de expérimentes, Trabajos Esta-dist. Investigación Oper., Vol. 29, 1978, pp. 28-51. [MR: 532917] [Google Scholar]
  • 3. M. A. GIL, Criterion of Maximizing theExpected quietness (Invariant by Homotheties in Relation to the Utilities), R.A.I.R.O.-Rech. Opér., Vol.16, 1982, pp. 319-331. [EuDML: 104817] [MR: 704149] [Zbl: 0505.62002] [Google Scholar]
  • 4. M. A. GIL, , Mixed Criterion of Expected Utility and Quietness (Invariant by Homotheties with Respect to the Utilities), Statistica, Anno XLII, Vol.1, 1982, pp. 21-37. [MR: 668835] [Zbl: 0504.62009] [Google Scholar]
  • 5. M. A. GIL, M. T. LOPEZ and P. GIL, Comparison between Fuzzy Information Systems, Kybernetes, 13, 1984, 245-251. [MR: 782812] [Zbl: 0552.94030] [Google Scholar]
  • 6. M. A. GIL, M. T. LOPEZ and P. GIL, Quantity of Information; Comparison between Information Systems: 1. Non Fuzzy States, Fuzzy Sets and Systems, 15, 1, 1985, 65-78. [MR: 785281] [Zbl: 0559.94002] [Google Scholar]
  • 7. M. A. GIL, M. T. LOPEZ and P. GIL Quantity of Information; Comparison between Information Systems: 2. Fuzzy States, Fuzzy Sets and Systems, 15, 2, 1 1985, 129-145. [MR: 787145] [Zbl: 0559.94003] [Google Scholar]
  • 8. R. GILES, Lukasiewicz Logic and Fuzzy Theory, Internat. J. Man. Mach. Stud., Vol. 8, 1976, pp. 313-327. [MR: 574078] [Zbl: 0335.02037] [Google Scholar]
  • 9. J. A. GOGUEN, L-Fuzzy Sets, J. Math. Anal. Appl., Vol. 18, 1967, pp. 145-174. [MR: 224391] [Zbl: 0145.24404] [Google Scholar]
  • 10. T. OUDA, H. TANAKA and K. ASAI, A Formulation of Fuzzy Décision Problems with Fuzzy Information, Using Probability Measures of Fuzzy Events, Inform. Contr., Vol. 38, 1978, pp. 135-147. [MR: 490454] [Zbl: 0401.94050] [Google Scholar]
  • 11. H. TANAKA, T. OKUDA and K. ASAI, Fuzzy Information and Décision in Statistical Model, Advances in fuzzy sets Theory and applications, North-Holland, 1979, p. 303-320. [MR: 558730] [Google Scholar]
  • 12. L. A. ZADEH, Fuzzy Sets, Inform. Contr., Vol. 8, 1965, p. 338-353. [Zbl: 0139.24606] [Google Scholar]
  • 13. L. A. ZADEH, Probability Measures of Fuzzy Events, J. Math. Anal. Appl., Vol. 23 1968, pp.421-427. [MR: 230569] [Zbl: 0174.49002] [Google Scholar]
  • 14. L. A. ZADEH, Theory of Fuzzy Sets, Mem. UCB/ERL M77/1, University of California, Berkeley, 1977. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.