Free Access
Issue
RAIRO-Oper. Res.
Volume 19, Number 2, 1985
Page(s) 117 - 131
DOI https://doi.org/10.1051/ro/1985190201171
Published online 06 February 2017
  • 1. E. CINLAR Introduction to Stochastic processes, Engle woods N. J. Cliffs, Prentice Hall, 1975. [MR: 380912] [Zbl: 0341.60019] [Google Scholar]
  • 2. E. GELENBE et G. PUJOLLE, Introductionaux Réseaux de Files d'Attente, Eyrolles, avril 1982. [MR: 687074] [Zbl: 0547.60092] [Google Scholar]
  • 3. E. ARJAS, Approximation many server queues by means of single server queues, Research Report 0-27, University of Onlu, Helsinki, 1977. [Zbl: 0392.60078] [Google Scholar]
  • 4. P. J. BURKE, The output of a queueing System, Opns. Res., vol. 4, 1956, p. 699-704. [MR: 83416] [Google Scholar]
  • 5. N. M. MIRASOL, The output of M/M/∞ queueing System is Poisson, Opns. Res., vol. 11, 1963 , p. 282-284. [Zbl: 0114.09401] [Google Scholar]
  • 6. H. KOBAYASHI, Application of the diffusion approximation to queueing network I, J. ACM, vol. 21, n° 2, 1974, p. 316-318. [MR: 350899] [Zbl: 0278.60074] [Google Scholar]
  • 7. M. REISER and H. KOBAYASHI, Accuracy of the diffusion approximation for some queueing System, IBM J. res. Devel., vol. 18, n° 2, 1974 p. 110-124. [MR: 373056] [Zbl: 0275.68014] [Google Scholar]
  • 8. E. GELENBE et G. PUJOLLE, A diffusion model for multiple class queueing networks proc. of the 3rd International symposium an Modelling, Bonn 1977. [MR: 535041] [Google Scholar]
  • 9. J.O.C. LITTLE, A proof of the queueing formula L = גXW, Operations Research, vol. 9, n ° 3 , 1961 p. 383-387. [MR: 125644] [Zbl: 0108.14803] [Google Scholar]
  • 10. E. GELENBE et G. PUJOLLE, Approximation to a single queue in a network, Acta Informatica, vol. 7, 1976, p. 123-136. [MR: 433635] [Zbl: 0349.60091] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.