Free Access
Issue
RAIRO-Oper. Res.
Volume 19, Number 3, 1985
Page(s) 247 - 274
DOI https://doi.org/10.1051/ro/1985190302471
Published online 06 February 2017
  • 1. J. ABADIE, The GRG Method for Nonlinear Programming, Design and Implementation of Optimization Software, Harvey Greenberg Sijthoff and Noordhof Ed., 1978. [Google Scholar]
  • 2. J. ABADIE et J. GUIGOU, Gradient Réduit Généralisé, note HI 069/02, EDF, Clamart, France, 1969. [Google Scholar]
  • 3. M. M. ABBOTT et M. C. VAN NESS, Théorie et applications de la thermodynamique, série Schaum, 1978. [Google Scholar]
  • 4. R. ARIS, R. BELLMAN et A. KALABA, Some Optimization Problems in Chemical Engineering, C.E.P. Symposium Series, 56, 1960, p. 95. [Google Scholar]
  • 5. R. H. BARTELS et G. H. GOLUB, The Simplex Method of Linear Programming Using LU Decomposition, Communications of the A.C.M., 12, 1969, p. 266. [Zbl: 0181.19104] [Google Scholar]
  • 6. J. E. DENNIS et J. J. MORE, Quasi Newton Methods, Motivation and Theory, S.I.A.M. Rev., 19, 1977, p. 46. [MR: 445812] [Zbl: 0356.65041] [Google Scholar]
  • 7. S. DOMENECH, Optimisation d'une opération de rectification discontinue - Commande en temps minimal, Thèse de Doctorat d'État, I.N.P., Toulouse, 1976. [Google Scholar]
  • 8. S. DOMENECH et M. ENJALBERT, Optimisation d'une opération de rectification discontinue par programmation dynamique, An. Quimi. Real Soc. Esp. Fis. Quim., 74, 1978, p. 319. [Google Scholar]
  • 9. S. DOMENECH, G. MURATET et N. THERIEN Recherche de commandes optimales liées à l'alimentation d'une usine de traitement d'eaux usées, Tribune du Cebedeau, 31, 1978, p. 241. [Google Scholar]
  • 10. E. DURAND, Solutions numériques des équations algébriques, Tome II, Masson et Cie, Paris, 1972. [Zbl: 0099.10801] [Google Scholar]
  • 11. R. FLETCHER et M. J. D. POWELL, On the Modification of LDLT Factorizations, Math. Comp., 28, 1974, p. 1067. [MR: 359297] [Zbl: 0293.65018] [Google Scholar]
  • 12. J. J. FORREST et J. A. TOMLIN, Updated Triangular Factors of the Basis to Maintain Sparsity in the Product Form for Simplex Method, Math. Prog., 2, 1972, p. 263. [MR: 307692] [Zbl: 0288.90048] [Google Scholar]
  • 13. P. E. GILL, G. H. GOLUB, W. MURRAY et M. A. SAUNDERS, Methods for Modifying Matrix Factorizations, Math. Comp., 28, 1974, p. 505. [MR: 343558] [Zbl: 0289.65021] [Google Scholar]
  • 14. P. E. GILL et W. MURRAY, Numerical Methods for Constrained Optimization, Academic Press, 1974. [Zbl: 0297.90082] [MR: 395227] [Google Scholar]
  • 15. P. E. GILL et W. MURRAY, Safeguarded Steplength Algorithms for Optimization Using Descent Methods, N.P.L. Report NAC 37, 1974. [Google Scholar]
  • 16. P. E. GILL, W. MURRAY, S. M. PICKEN et M. H. WRIGHT, The Design and Structure of a Fortran Program Library for Optimization, Report SOL 77-7, Stanford Univ., CA, 1977. [Zbl: 0411.68029] [Google Scholar]
  • 17. P. E. GILL, W. MURRAY et M. A. SAUNDERS, Methods for Computing and Modifying the LDV Factors of a Matrix, Math. Comp., 29, 1975, p. 1051. [MR: 388754] [Zbl: 0339.65022] [Google Scholar]
  • 18. A. GOMEZ et J. D. SEADER, Separation Sequences Synthesis by a Predictor Based Ordered Search, A.I.Ch.E. J., 22, 1976, p. 970. [Google Scholar]
  • 19. D. GOLDFARB, Matrix Factorization in Optimization of Nonlinear Functions Subject to Linear Constraints, Math. Prog., 10, 1975, p.1. [MR: 406523] [Zbl: 0374.90060] [Google Scholar]
  • 20. D. GOLDFARB, Matrix Factorization in Optimization of Nonlinear Functions Subject to Linear Constraints - An Addendum, Math. Prog., 12, 1977, p. 279. [MR: 503798] [Zbl: 0382.90082] [Google Scholar]
  • 21. J. B. HENDRICKSON, A General Protocol for Synthesis Design, Topics in Current Chemistry, 62, 1976, p. 49. [Google Scholar]
  • 22. E. HELLERMAN et D. RARICK, Reinversion with the Preassigned Pivot Procedure, Math. Prog., 1, 1971, p, 195. [MR: 293819] [Zbl: 0246.65022] [Google Scholar]
  • 23. E. HELLERMAN et D. RARICK, The Partitioned Preassigned Pivot Procedure (P4), in Sparse Matrices and their Applications, Plenum Press, 1972, p. 67. [Zbl: 0246.65022] [MR: 331743] [Google Scholar]
  • 24. HO THI DIEU, Optimisation continue d'un procédé chimique au moyen d'un calculateur analogique, Thèse M.S., Université de Laval, 1968. [Google Scholar]
  • 25. L. S. LASDON, R. L. FOX et M. W. RATNER, Nonlinear Optimization Using the Generalized Reduced Gradient Method, R.A.I.R.O., 3, 1974, p. 73. [EuDML: 104604] [MR: 451713] [Zbl: 0329.90060] [Google Scholar]
  • 26. B. LINNHOFF, D. R. MASON et I. WARDLES, Understanding Heat Exchanger Networks, Comp. and Chem. Eng., 3, 1979, p. 295. [Google Scholar]
  • 27. B. LINNHOFF et J. A. TURNER, Heat-Recovery Networks: New Insights Yield Big Savings, Chem. Eng., 11, 1981, p. 56. [Google Scholar]
  • 28. M. A. MENZIES et A. I. JOHNSON, Synthesis of Optimal Energy Recovery Networks Using Discrete Methods, Can. J. Chem. Engineer., 50, 1972, p. 290. [Google Scholar]
  • 29. W. MURRAY, Numerical Methods for Unconstrained Optimization, Academic Press, 1972. [Google Scholar]
  • 30. B. A. MURTAGH, On the Simuitaneous Solution and Optimization of Large-Scale Engineering Systems, Comp. and Chem. Eng., 6, 1982, p.1. [Google Scholar]
  • 31. B. A. MURTAGH et R. W. H. SARGENT, Computational Experience with Quadratically Convergent Minimization Methods, Comp. J., 13, 1970, p. 185. [MR: 266403] [Zbl: 0202.16303] [Google Scholar]
  • 32. B. A. MURTAGH et M. A. SAUNDERS, MINOS Use's Guide, Report SOL 77-9, Stanford Univ., CA, 1977. [Google Scholar]
  • 33. B. A. MURTAGH et M. A. SAUNDERS, Nonlinear Programming for Large, Sparse Systems, Report SOL 76-15, Stanford Univ., CA, 1976. [Google Scholar]
  • 34. B. A. MURTAGH et M. A. SAUNDERS, Large Scale Linearly Constrained Optimization, Math. Prog., 14, 1978, p. 41. [MR: 462607] [Zbl: 0383.90074] [Google Scholar]
  • 35. B. A. MURTAGH et M. A. SAUNDERS, The Implementation of a Lagrangian-Based Algorithm for Sparse Nonlinear Constraints, Report SOL 80-1, Stanford Univ., CA, 1980. [Google Scholar]
  • 36. B. A. MURTAGH et M. A. SAUNDERS, MINOS/AUGMENTED User's Manual, Report SOL 80-14, Stanford Univ., CA, 1980. [Google Scholar]
  • 37. P. V. PRECKEL, Modules for Use with MINOS/AUGMENTED, Report SOL 80-15, Stanford Univ., CA, 1980. [Google Scholar]
  • 38. L. PIBOULEAU et S. DOMENECH, Une procédure arborescente pour la séparation de mélanges complexes dans l'industrie chimique, R.A.I.R.O., Rech. Op., 19, 1985, p. 35. [EuDML: 104869] [Zbl: 0567.90063] [Google Scholar]
  • 39. M. J. D. POWELL, A Note of Quasi-Newton Formulae for Sparse Second Derivative Matrices, Math. Prog., 20, 1981, p. 144. [MR: 607402] [Zbl: 0453.90081] [Google Scholar]
  • 40. R. N. S. RATHORE, K. A. VAN WORMER et G. J. POWELS, Synthesis Strategies for Multicomponent Separation Systems with Energy Integration, A.I.Ch.E.J., 20, 1974, p. 491. [Google Scholar]
  • 41. F. R. RODRIGO et J. D. SEADER, Synthesis of Separation Sequences by Ordered Branch Search, A.I.Ch.E. J., 21, 1975, p. 885. [Google Scholar]
  • 42. M. A. SAUNDERS, Large-Scale Linear Programming Using the Cholesky Factorization, Report STAN-CS-72-252, 1972. [Google Scholar]
  • 43. M. A. SAUNDERS, MINOS System Manual, Report SOL77-31, Stanford Univ., CA, 1977. [Google Scholar]
  • 44. M. A. SAUNDERS, MINOS Distribution Documentation, Report SOL 80-100, Stanford Univ., CA, 1980. [Google Scholar]
  • 45. L. K. SCHUBERT, Modification of a Quasi-Newton Method for Nonlinear Equations with a Sparse Jacobian, Math. Comp., 25, 1970, p, 27. [MR: 258276] [Zbl: 0198.49402] [Google Scholar]
  • 46. M. A. STADTHEER, G. D. GARY et R. C. ALKIRE, Optimization of an Electrolytic Cell with the Use of a GRG Algorithm, Comp. and Chem. Eng., 7, 1983, p. 27. [Google Scholar]
  • 47. P. TOLLA, Amélioration de la stabilité numérique d'algorithmes de résolution de programmes linéaires à matrices de contraintes clairsemées, R.A.I.R.O., Rech.Op., 18, 1984, p.19. [EuDML: 104844] [MR: 737366] [Zbl: 0576.90060] [Google Scholar]
  • 48. J. A. TOMLIN, Modifying Triangular Factors of the Basis in the Simplex method, in Sparse Matrices and their Applications, Plenum Press, 1972, p. 77. [Zbl: 0288.90048] [MR: 331743] [Google Scholar]
  • 49. J. A. TOMLIN, On the Pricing and Backward Transformation in Linear Programming, Math. Prog., 6, 1974, p. 42. [MR: 337319] [Zbl: 0278.90043] [Google Scholar]
  • 50. J. VIGNES, Implementation des méthodes d'optimisation : Test d'arrêt optimal, contrôle et précision de la solution, R.A.I.R.O., Rech. Op., 18, 1984, p. 1. [EuDML: 104845] [MR: 737365] [Zbl: 0601.65052] [Google Scholar]
  • 51. P. WOLFE, Methods of Nonlinear Programming - the Reduced Gradient method, Recent Advances in Math. Progr., 67, 1963. [MR: 155683] [Zbl: 0225.90042] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.