Free Access
Issue |
RAIRO-Oper. Res.
Volume 20, Number 2, 1986
|
|
---|---|---|
Page(s) | 139 - 161 | |
DOI | https://doi.org/10.1051/ro/1986200201391 | |
Published online | 06 February 2017 |
- 1. E. J. ANDERSON et A. B. PHILPOTT, Duality and an Algorithm for a Class of Continuons Transportation Problems, Oper. Res., vol. 9, n° 2, 1984, p. 222-231. [MR: 742257] [Zbl: 0538.90057] [Google Scholar]
- 2. P. E. APPELL, Mémoire sur les déblais et les remblais des systèmes continus ou discontinus, Mémoires présentés par divers savants, vol. 29, 2e série, 1887, p. 181-208. [JFM: 20.0375.01] [Google Scholar]
- 3. P. E. APPELL, Le problème géométrique des déblais et remblais, Gauthier-Villars, Paris, 1928. [EuDML: 192558] [Zbl: 54.0527.03] [JFM: 54.0527.03] [Google Scholar]
- 4. S. CAMBANIS, G. SIMONS et W. F. STOUT, Inequalities for Ek (X, Y) when the Marginals Are Fixed, Z. Wahrsch. und Verw. Gebiete, vol. 36, n° 4, 1976, p. 285-294. [MR: 420778] [Zbl: 0325.60002] [Google Scholar]
- 5. S. DUBUC et M. TANGUAY, Varaibles duales dans un programme continu de transport, Cahiers Centre Études Rech. Opér., vol. 26, n° 1, 1984, p. 17-23. [MR: 750901] [Zbl: 0538.90058] [Google Scholar]
- 6. S. DUBUC et F. TODOR, La règle du trapèze pour l'intégrale de Riemann-Stieltjes (II), Ann. Sc. Math. Québec, vol. 8, n° 2, 1984, p. 141-153. [MR: 774823] [Zbl: 0565.41030] [Google Scholar]
- 7. M. D. GRIGORIADIS et T. Hsu, The Rutgers Minimum Cost Network Flow Subroutines, Rutgers University, New Jersey, 1979. [Google Scholar]
- 8. F. L. HITCHCOCK, The Distribution of a Product from Several Sources to Numerous Localities, J. Math. Phys., Mass. Inst. Techn., vol. 20, n° 2, 1941, p. 224-230. [MR: 4469] [Zbl: 0026.33904] [Google Scholar]
- 9. L. KANTOROVITCH, On the Translocation of Masses, C.R. (Doklady) Acad. Sc. U.R.S.S. (N.S.), vol. 37, n° 7-8, 1942, p. 199-201. [MR: 9619] [Zbl: 0061.09705] [Google Scholar]
- 10. K. S. KRETSCHMER, Programmes in Paired Spaces, Canad. J. Math., vol. 13, 1961, p. 221-238. [MR: 155684] [Zbl: 0097.14705] [Google Scholar]
- 11. V. L. LEVIN et A. A. MILYUTIN, The Problem of Mass Transfer with a Discontinuous Cost Function and the Mass Statement of the Duality for Convex Extremal Problems, Uspehi Mat. Nauk. vol. 34, n° 3, 1979, p.3-68. [MR: 542237] [Zbl: 0422.46060] [Google Scholar]
- 12. V. STRASSEN, The Existence of Probability Measures with Given Marginals, of Math. Stat., vol. 36, 1965, p. 423-439. [MR: 177430] [Zbl: 0135.18701] [Google Scholar]
- 13. A. H. TCHEN, Inequalities for Distributions with Given Marginals, Ann. Probab., vol. 8, n° 4, 1980, p. 814-827. [MR: 577318] [Zbl: 0459.62010] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.