Free Access
RAIRO-Oper. Res.
Volume 20, Number 3, 1986
Page(s) 177 - 197
Published online 06 February 2017
  • D. Avis, A survey of heuristics for the weighted matching problem, Network, vol. 13, n° 4, 1983, 475-493. [MR: 723694] [Zbl: 0532.90090] [Google Scholar]
  • M. O. BALL, U. DERIGS, An analysis of alternative strategies for implementing matching algorithms, Network, vol. 13, n° 4, 1983, 517-550. [MR: 723696] [Zbl: 0519.68055] [Google Scholar]
  • J. BEARDWOOD, J. H. HALTON, J. M. HAMMERSELY, The shortest path through many points, Proc. of the Cambridge Phil. Society, vol. 55, 1959, 299-327. [MR: 109316] [Zbl: 0118.35601] [Google Scholar]
  • E. BONOMI, J. L. LUTTON, The N-city travelling salesman problem: Statistical Mechanics and the Metropolis Algorithm, SIAM Review, vol. 26, n° 4, 1984. [MR: 765672] [Zbl: 0551.90095] [Google Scholar]
  • E. BONOMI, J. L. LUTTON, The Asymptotic behaviour of quadratic sum assignment problems: a statistical mechanics approach, to be published in the Europ. J. Op. Res. [Zbl: 0598.90065] [Google Scholar]
  • S. GEMAN, D. GEMAN, Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images, IEEE Trans, Pattern Anal. Machine Intell., vol. PAMI-6, 1984, 721-741. [Zbl: 0573.62030] [Google Scholar]
  • B. GIDAS, Non-stationnary Markov Chains and Convergence of the annealing algorithm, J. Stat. Phys., vol. 39, n° 1/2, 1985. [MR: 798248] [Zbl: 0642.60049] [Google Scholar]
  • J. M. HAMMERSLEY, D. C. HANDCOMB, Monte-Carlo methods, Chapman and Hall, London, 1964. [Zbl: 0121.35503] [Google Scholar]
  • M. IRI, K. MUROTA, S. MATSUI, Heuristic for Planar Minimum-Weight Perfect Matching, Network, vol. 13, 1983, 67-92. [MR: 693856] [Zbl: 0503.68050] [Google Scholar]
  • S. KIRKPATRICK, C. D. GELATT, M. P. VECCHI, Optimization by simulated annealing, Science, vol. 220, n° 4598, 1983, 671-680. [Zbl: 1225.90162] [MR: 702485] [Google Scholar]
  • S. KIRKPATRICK, Optimization by simulated annealing, quantitative studies, J. Stat. Phys., vol. 34, n° 516, 1984, 975-987. [MR: 751723] [Google Scholar]
  • E. L. LAWLER, Combinatorial optimization: networks and matroids, Holt, Rinehart and Winston, New York, 1976. [MR: 439106] [Zbl: 0413.90040] [Google Scholar]
  • N. METROPOLIS, A. ROSENBLUTH, M. ROSENBLUTH, A. TELLER, E. TELLER, Equation of state calculations by fast computing machines. J. Chem. Phys., vol. 21, 1953, 1087-1092. [Google Scholar]
  • [14]C. H. PAPADIMITRIOU, The probabilistic analysis of matching heuristics, in Proc. 15th Ann. Allerton Conf. on Communication, Control and Computing, 1977, p. 368-378. [Google Scholar]
  • C. H. PAPADIMITRIOU, K. STREIGHTZ, Combinatorial Optimization Aglorithms and Complexity, Prentice Hall, Englewood Cliffs, N-Y, 1982. [Zbl: 0503.90060] [Google Scholar]
  • E. M. REINGOLD, R. E. TAYAN, On a Greedy heuristic for complete matching, SIAM J. Comput., vol. 10, n° 4, 1981, 676-681. [MR: 635425] [Zbl: 0468.68072] [Google Scholar]
  • E. M. REINGOLD, K. J. SUPOWIT, Divide and Conquer heuristics for minimum weighted Euclidean matching, SIAM J. Comput., vol. 12, n° 1 1983, 118-143. [MR: 687806] [Zbl: 0501.68032] [Google Scholar]
  • M. WEBER, Th. M. LIEBLING, The Euclidean matching problem and the Metropolis algorithm, private communication. [Zbl: 0595.90060] [Google Scholar]
  • [19] Problem solving, The Economist, July 28, 1984, 70-71. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.