Free Access
RAIRO-Oper. Res.
Volume 21, Number 1, 1987
Page(s) 65 - 85
Published online 06 February 2017
  • 1. R. M. ADELSON, G. LAPORTE et J. M. NORMAN, A Dynamic Programming Formulation with Diverse Applications, Operational Research Quarterly, Vol. 27, 1976, pp. 119-121. [Zbl: 0319.90070] [Google Scholar]
  • 2. J. C. BARTHOLDI III, J. B. ORLIN et H. D. RATLIFF, Cyclic Scheduling via Integer Programs with Circular Ones, Operations Research, Vol. 28, 1980, pp. 1074-1085. [MR: 589671] [Zbl: 0451.90075] [Google Scholar]
  • 3. G. CARPANETO et P. TOTH, Some New Branching and Bounding Criteria for the Asymmetric Travelling Salesman Problem, Management Science, Vol. 26, 1980, pp. 736-743. [MR: 591295] [Zbl: 0445.90089] [Google Scholar]
  • 4.G. B. DANTZIG, On the Significance of Solving Linear Programming Problems with Some Integer Variables, Econometrica, Vol. 28, 1960, pp.30-44. [MR: 112748] [Zbl: 0089.16101] [Google Scholar]
  • 5. P. DEMPSEY et M. BAUMHOFF, The Statistical Use of Artifact Distributions to Establish Chronological Sequence, American Antiquity, Vol. 28, 1963, pp. 496-509. [Google Scholar]
  • 6. J. E. DORAN, Computer Analysis of Data from the La Tène Cemetery at Münsingen-Rain, Mathematics in the Archaeological and Historical Sciences, F. R. HODSON et al Eds., Edinburgh University Press, 1971, pp. 422-431. [Google Scholar]
  • 7. J. E. DORAN et S. POWELL, Solving a Combinatorial Problem Encountered in Archaeology, Some Research Applications of the Computer, Atlas Computer Laboratory, 1972. [Google Scholar]
  • 8. L. R. FORD et D. R. FULKERSON, Flows in Networks, Princeton University Press, 1962. [MR: 159700] [Zbl: 1216.05047] [Google Scholar]
  • 9. D. R. FULKERSON et O. A. GROSS, Incidence Matrices and Interval Graphs, Pacific Journal of Mathematics Vol. 15, 1965, pp. 835-855. [MR: 186421] [Zbl: 0132.21001] [Google Scholar]
  • 10. B. L. GOLDEN et W. R. STEWART, Empirical Analysis of Heuristics, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, E. L. LAWLER et al Eds., Wiley, 1985, pp. 207-250. [MR: 811474] [Zbl: 0591.90090] [Google Scholar]
  • 11. K. GOLDMANN, Some Archaeological Criteria for Chronological Seriation, Mathematics in the Archaeological and Historical Sciences, F. R, HODSON et al. Eds. Edinburgh University Press, 1971, pp. 202-208. [Google Scholar]
  • 12. M. D. GRIGORIADIS et T. Hsu, RNET-The Rutgers Minimum Cost Network Flow Subroutines, Rutgers University, New-Brunswick, N.J., 1979. [Google Scholar]
  • 13. F. R. HODSON, The La Tène Cemetery at Münsingen-Rain, Stämpfli, 1968. [Google Scholar]
  • 14. F. R. HODSON, D. G. KENDALL et P. TAUTU, Mathematics in the Archaeological and Historical Sciences, Edinburgh University Press, 1971. [Zbl: 0254.00020] [Google Scholar]
  • 15. F. HOLE et M. SHAW, Computer Analysis of Chronological Seriation, Rice University Studies, Vol. 53, 1967. [Google Scholar]
  • 16. L. J. HUBERT, Some Applications of Graph Theory and Reiated Non-Metric Techniques to Problems of Approximate Seriation: the Case of Symmetric Proximity Measures, British Journal of Mathematical and Statistical Psychology, Vol. 27, 1974, pp. 133-153. [Zbl: 0285.92029] [Google Scholar]
  • 17. L. J. HUBERT et F. B. BAKER, Applications of Combinatorial Programming to Data Analysis: the Travelling Salesman Problem and Related Problems, Psychometrika, Vol. 43, 1978, pp. 81-91. [MR: 525910] [Google Scholar]
  • 18. D. G. KENDALL, Some Problems and Methods in Statistical Archaeology, World Archaeology, Vol. 1, 1969, pp. 68-76. [Google Scholar]
  • 19. I. KIVU-SCULY, On the Hole-Show Method of Permutation Search, Mathematics in the Archaeological and Historical Sciences, F. R. HODSON et al. Eds., Edinburgh University Press, 1971, pp. 253-254. [Google Scholar]
  • 20. R. S. KUZARA, R. G. MEAD et K. A. DIXON, Seriation of Anthropological Data: a Computer Program for Matrix Ordering, American Anthropologist, Vol. 68, 1966, pp. 1442-1455. [Google Scholar]
  • 21. G. LAPORTE, A Comparison of Two Norms in Archaeological Seriation, Journal of Archaeological Science, Vol. 3, 1976, pp. 249-255. [Google Scholar]
  • 22. G. LAPORTE et S. DESROCHES, The Problem of Assigning Students to Course Sections in a Large Engineering School, Computers and Operations Research, Vol. 13, 1986, pp. 387-394. [Google Scholar]
  • 23. E. L. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY KAN et D. B. SHMOYS, The Travelling Salesman Problem. A Guided Tour of Combinatorial 0ptimization, Wiley, 1985. [MR: 811467] [Zbl: 0562.00014] [Google Scholar]
  • 24. J. K. LENSTRA et A. H. G. RINNOOY KAN, Some Applications of the Travelling Salesman Problem, Operational Research Quarterly, Vol. 26, 1975, pp. 717-734. [Zbl: 0308.90044] [Google Scholar]
  • 25. S. LIN, Computer Solution of the Travelling Salesman Problem, Bell System Technical Journal, Vol. 44, 1965, pp. 2245-2269. [MR: 189224] [Zbl: 0136.14705] [Google Scholar]
  • 26. J. D. C. LITTLE, K. G. MURPHY, D. W. SWEENEY et C. KAREL, An Algorithm for the Travelling Salesman Problem, Operations Research, Vol. 11, 1963, pp. 972-989. [Zbl: 0161.39305] [Google Scholar]
  • 27. W. H. MARQUARDT, Advances in Archaeological Seriation, Advances in Archaeological Method and Theory, Vol. 1, M. B. SCHIFFER Ed., Academic Press, 1978, pp. 257-314. [Google Scholar]
  • 28. B. J. MEGGERS et C. EVANS, Archaeological Investigation in the Mouth of the Amazon, Bulletin 167, Smithsonian Institute, Bureau of American Ethnology, 1957. [Google Scholar]
  • 29. P. MILIOTIS, Integer Programming Approaches to the Travelling Salesman Problem, Mathematical Programming, Vol 10, 1976, pp. 367-378. [MR: 441337] [Zbl: 0337.90041] [Google Scholar]
  • 30. T. A. J. NICHOLSON, Permutation Programming and its Applications, Ph.D. Thesis, University of London, 1970. [Google Scholar]
  • 31. J. M. NORMAN, Elementary Dynamic Programming, Crane, Russak & Company, Inc., New York, 1977. [MR: 401171] [Zbl: 0338.90052] [Google Scholar]
  • 32. I. OR, Traveling Salesman-Type Combinatorial Problems and their Relation to the Logistics of Regional Blood Banking, Ph.D. Thesis, Northwestern University, Evanston, IL, 1976. [Google Scholar]
  • 33. W. S. ROBINSON, Method for Chronologically Ordering Archaeological Deposits, American Antiquity, Vol. 16, 1951, pp. 293-301. [Google Scholar]
  • 34. A. SHUCHAT, Matrix and Network Models in Archaeology, Mathematics Magazine, Vol. 57, 1984, pp. 3-14. [MR: 729033] [Zbl: 0532.90097] [Google Scholar]
  • 35. R. SIBSON, Some Thoughts on Sequencing Methods, Mathematics in the Archaeological and Historical Sciences, F. R. HODSON et al Eds., Edinburgh University Press, 1971, pp. 263-266. [Google Scholar]
  • 36. A. STEFAN, Applications of Mathematical Methods to Epigraphy, Mathematics in the Archaeological and Historical Sciences, F. R. HODSON et al. Eds., Edinburgh University Press, 1971, pp. 267-275. [Google Scholar]
  • 37. J. TELGEN, How to Schedule Meetings with a Travelling Salesman Q & D, and Why we Didn't, Interfaces, Vol. 15, 1985, pp. 89-93. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.