Free Access
Issue
RAIRO-Oper. Res.
Volume 21, Number 1, 1987
Page(s) 65 - 85
DOI https://doi.org/10.1051/ro/1987210100651
Published online 06 February 2017
  • 1. R. M. ADELSON, G. LAPORTE et J. M. NORMAN, A Dynamic Programming Formulation with Diverse Applications, Operational Research Quarterly, Vol. 27, 1976, pp. 119-121. [Zbl: 0319.90070]
  • 2. J. C. BARTHOLDI III, J. B. ORLIN et H. D. RATLIFF, Cyclic Scheduling via Integer Programs with Circular Ones, Operations Research, Vol. 28, 1980, pp. 1074-1085. [MR: 589671] [Zbl: 0451.90075]
  • 3. G. CARPANETO et P. TOTH, Some New Branching and Bounding Criteria for the Asymmetric Travelling Salesman Problem, Management Science, Vol. 26, 1980, pp. 736-743. [MR: 591295] [Zbl: 0445.90089]
  • 4.G. B. DANTZIG, On the Significance of Solving Linear Programming Problems with Some Integer Variables, Econometrica, Vol. 28, 1960, pp.30-44. [MR: 112748] [Zbl: 0089.16101]
  • 5. P. DEMPSEY et M. BAUMHOFF, The Statistical Use of Artifact Distributions to Establish Chronological Sequence, American Antiquity, Vol. 28, 1963, pp. 496-509.
  • 6. J. E. DORAN, Computer Analysis of Data from the La Tène Cemetery at Münsingen-Rain, Mathematics in the Archaeological and Historical Sciences, F. R. HODSON et al Eds., Edinburgh University Press, 1971, pp. 422-431.
  • 7. J. E. DORAN et S. POWELL, Solving a Combinatorial Problem Encountered in Archaeology, Some Research Applications of the Computer, Atlas Computer Laboratory, 1972.
  • 8. L. R. FORD et D. R. FULKERSON, Flows in Networks, Princeton University Press, 1962. [MR: 159700] [Zbl: 1216.05047]
  • 9. D. R. FULKERSON et O. A. GROSS, Incidence Matrices and Interval Graphs, Pacific Journal of Mathematics Vol. 15, 1965, pp. 835-855. [MR: 186421] [Zbl: 0132.21001]
  • 10. B. L. GOLDEN et W. R. STEWART, Empirical Analysis of Heuristics, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, E. L. LAWLER et al Eds., Wiley, 1985, pp. 207-250. [MR: 811474] [Zbl: 0591.90090]
  • 11. K. GOLDMANN, Some Archaeological Criteria for Chronological Seriation, Mathematics in the Archaeological and Historical Sciences, F. R, HODSON et al. Eds. Edinburgh University Press, 1971, pp. 202-208.
  • 12. M. D. GRIGORIADIS et T. Hsu, RNET-The Rutgers Minimum Cost Network Flow Subroutines, Rutgers University, New-Brunswick, N.J., 1979.
  • 13. F. R. HODSON, The La Tène Cemetery at Münsingen-Rain, Stämpfli, 1968.
  • 14. F. R. HODSON, D. G. KENDALL et P. TAUTU, Mathematics in the Archaeological and Historical Sciences, Edinburgh University Press, 1971. [Zbl: 0254.00020]
  • 15. F. HOLE et M. SHAW, Computer Analysis of Chronological Seriation, Rice University Studies, Vol. 53, 1967.
  • 16. L. J. HUBERT, Some Applications of Graph Theory and Reiated Non-Metric Techniques to Problems of Approximate Seriation: the Case of Symmetric Proximity Measures, British Journal of Mathematical and Statistical Psychology, Vol. 27, 1974, pp. 133-153. [Zbl: 0285.92029]
  • 17. L. J. HUBERT et F. B. BAKER, Applications of Combinatorial Programming to Data Analysis: the Travelling Salesman Problem and Related Problems, Psychometrika, Vol. 43, 1978, pp. 81-91. [MR: 525910]
  • 18. D. G. KENDALL, Some Problems and Methods in Statistical Archaeology, World Archaeology, Vol. 1, 1969, pp. 68-76.
  • 19. I. KIVU-SCULY, On the Hole-Show Method of Permutation Search, Mathematics in the Archaeological and Historical Sciences, F. R. HODSON et al. Eds., Edinburgh University Press, 1971, pp. 253-254.
  • 20. R. S. KUZARA, R. G. MEAD et K. A. DIXON, Seriation of Anthropological Data: a Computer Program for Matrix Ordering, American Anthropologist, Vol. 68, 1966, pp. 1442-1455.
  • 21. G. LAPORTE, A Comparison of Two Norms in Archaeological Seriation, Journal of Archaeological Science, Vol. 3, 1976, pp. 249-255.
  • 22. G. LAPORTE et S. DESROCHES, The Problem of Assigning Students to Course Sections in a Large Engineering School, Computers and Operations Research, Vol. 13, 1986, pp. 387-394.
  • 23. E. L. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY KAN et D. B. SHMOYS, The Travelling Salesman Problem. A Guided Tour of Combinatorial 0ptimization, Wiley, 1985. [MR: 811467] [Zbl: 0562.00014]
  • 24. J. K. LENSTRA et A. H. G. RINNOOY KAN, Some Applications of the Travelling Salesman Problem, Operational Research Quarterly, Vol. 26, 1975, pp. 717-734. [Zbl: 0308.90044]
  • 25. S. LIN, Computer Solution of the Travelling Salesman Problem, Bell System Technical Journal, Vol. 44, 1965, pp. 2245-2269. [MR: 189224] [Zbl: 0136.14705]
  • 26. J. D. C. LITTLE, K. G. MURPHY, D. W. SWEENEY et C. KAREL, An Algorithm for the Travelling Salesman Problem, Operations Research, Vol. 11, 1963, pp. 972-989. [Zbl: 0161.39305]
  • 27. W. H. MARQUARDT, Advances in Archaeological Seriation, Advances in Archaeological Method and Theory, Vol. 1, M. B. SCHIFFER Ed., Academic Press, 1978, pp. 257-314.
  • 28. B. J. MEGGERS et C. EVANS, Archaeological Investigation in the Mouth of the Amazon, Bulletin 167, Smithsonian Institute, Bureau of American Ethnology, 1957.
  • 29. P. MILIOTIS, Integer Programming Approaches to the Travelling Salesman Problem, Mathematical Programming, Vol 10, 1976, pp. 367-378. [MR: 441337] [Zbl: 0337.90041]
  • 30. T. A. J. NICHOLSON, Permutation Programming and its Applications, Ph.D. Thesis, University of London, 1970.
  • 31. J. M. NORMAN, Elementary Dynamic Programming, Crane, Russak & Company, Inc., New York, 1977. [MR: 401171] [Zbl: 0338.90052]
  • 32. I. OR, Traveling Salesman-Type Combinatorial Problems and their Relation to the Logistics of Regional Blood Banking, Ph.D. Thesis, Northwestern University, Evanston, IL, 1976.
  • 33. W. S. ROBINSON, Method for Chronologically Ordering Archaeological Deposits, American Antiquity, Vol. 16, 1951, pp. 293-301.
  • 34. A. SHUCHAT, Matrix and Network Models in Archaeology, Mathematics Magazine, Vol. 57, 1984, pp. 3-14. [MR: 729033] [Zbl: 0532.90097]
  • 35. R. SIBSON, Some Thoughts on Sequencing Methods, Mathematics in the Archaeological and Historical Sciences, F. R. HODSON et al Eds., Edinburgh University Press, 1971, pp. 263-266.
  • 36. A. STEFAN, Applications of Mathematical Methods to Epigraphy, Mathematics in the Archaeological and Historical Sciences, F. R. HODSON et al. Eds., Edinburgh University Press, 1971, pp. 267-275.
  • 37. J. TELGEN, How to Schedule Meetings with a Travelling Salesman Q & D, and Why we Didn't, Interfaces, Vol. 15, 1985, pp. 89-93.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.