Free Access
Issue
RAIRO-Oper. Res.
Volume 22, Number 1, 1988
Page(s) 27 - 32
DOI https://doi.org/10.1051/ro/1988220100271
Published online 06 February 2017
  • 1. R. E. CAMPELLO and N. MACULAN, A Lower Bound to the Set Partitioning Problem with Side Constraints, DRC-70-20-3, Design Research Center Report Series, Carnegie-Mellon University, Pittsburg, Pennylvania, 15213, U.S.A., 1983. [Google Scholar]
  • 2. K. DUDZINSKI and S. WALUKIEWICZ, Exact Methods for the Knapsack Problem and its Generalizations, European Journal of Operational Research (EJOR), Vol. 28, No. 1, 1987, pp. 3-21. [MR: 871368] [Zbl: 0603.90097] [Google Scholar]
  • 3. M. E. DYER, A Geometric Approach to Two-Constraint Linear Programs with Generalized Upper Bounds, Advances in Computing Research, Vol. 1, 1983, pp. 79-90, JAI Press. [Google Scholar]
  • 4. M. E. DYER, An O (n) Algorithm for the Multiple-Choice Knapsack Linear Program, Mathematical Programming, Vol. 29, No. 1, 1984, pp. 57-63. [MR: 740505] [Zbl: 0532.90068] [Google Scholar]
  • 5. E. L. JOHNSON and M. G. PADBERG, A Note on the Knapsack Problem with Special Ordered Sets, Operations Research Letters, Vol 1, No. 1, 1981, pp. 18-22. [MR: 643055] [Zbl: 0493.90062] [Google Scholar]
  • 6. D. E. MULLER and F. P. PREPARATA, Finding the Intersection of Two Convex Polyhedra, Theoretical Computer Sciences, Vol. 7, 1978, pp. 217-238. [MR: 509019] [Zbl: 0396.52002] [Google Scholar]
  • 7. R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, N.J., U.S.A., 1970. [MR: 274683] [Zbl: 0932.90001] [Google Scholar]
  • 8. E. ZEMEL, The Linear Multiple Choice Knapsack Problem, Operations Research, Vol. 28, No. 6, November-December, 1980, pp. 1412-1423. [MR: 609968] [Zbl: 0447.90064] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.