Free Access
Issue
RAIRO-Oper. Res.
Volume 22, Number 3, 1988
Page(s) 269 - 289
DOI https://doi.org/10.1051/ro/1988220302691
Published online 06 February 2017
  • 1. M. L. BALINSKI, Signatures des points extrêmes du polyhèdres dual du problème de transport, C.R. Acad. Sci. Paris, 296, Série I, pp. 456-459, 1983. [MR: 701910] [Zbl: 0527.90069]
  • 2. M. L. BALINSKI, Signature Methods for the Assignment Problem, Operations Research, 33, 1985, pp. 527-537. [MR: 791705] [Zbl: 0583.90064]
  • 3. M. L. BALINSKI, A Competitive (dual) Simplex Method for the Assignment Problem, Mathematical Programming, 34, 1986, pp. 125-141. [MR: 838474] [Zbl: 0596.90064]
  • 4. M. L. BALINSKI and R. E. GOMORY, A Primal Method for the Assignment and Transportation Problems, Management Science, 10, 1964, pp. 578-593.
  • 5. R. BARR, F. GLOVER and D. KLINGMAN, The Alternating path Basis Algorithm for Assignment Problems, Mathematical Programming, Vol. 13, 1977, pp. 1-13. [MR: 444039] [Zbl: 0378.90097]
  • 6. D. BERTSEKAS, A new algorithm for the Assignment Problem, Mathematical Programming, Vol. 21, 1981, pp. 152-171. [MR: 623835] [Zbl: 0461.90069]
  • 7. W. H. CUNNINGHAM, A Network Simplex Method, Mathematical Programming, Vol. 11, 1976, pp. 105-116. [MR: 462532] [Zbl: 0352.90039]
  • 8. W. H. CUNNINGHAM and A. B. MARSH, III, A Primai Algorithm for Optimum Matching, Mathematical Programming Study, 8, 1978, pp. 50-72. [Zbl: 0409.90081]
  • 9. E. A. DINIC and M. A. KRONRAD, An Algorithm for the Solution of the Assignment Problem, Soviet Mathematics Doklady, Vol. 10, 1969, pp. 248-264. [Zbl: 0213.44801]
  • 10. J. ENDMONDS and R. M. KARP, Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems, Journal of the Association for Computing Machinery, Vol. 19, 1972, pp. 248-264. [Zbl: 0318.90024]
  • 11. L. R. FORD and D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton, 1962. [MR: 159700] [Zbl: 0106.34802]
  • 12. D. GOLDFARB, Efficient dual Simplex Methods for the Assignment Problem, Mathematical Programming, Vol. 33, 1985, pp. 127-203. [MR: 808910] [Zbl: 0578.90051]
  • 13. M. S. HUNG, A Polynomial Simplex Method for the Assignment Problem, Operations Research, Vol. 31, 1983, pp. 595-600. [MR: 709237] [Zbl: 0519.90056]
  • 14. M. S. HUNG and W. O. ROM, Solving the Assignment Problem by Relaxation, Operations Research, Vol. 28, 1980, pp. 969-982. [MR: 584900] [Zbl: 0441.90062]
  • 15. H. W. KUHN, The Hungarian Method for the Assignment Problem, Naval Research Logistics Quarterly, Vol. 2, 1955, pp. 83-97. [MR: 75510] [Zbl: 0143.41905]
  • 16. E. LAWLER, Combinatorial Optimization, Network and Matroids, Holt, Rinchart and Winston, New York, 1976. [MR: 439106] [Zbl: 0413.90040]
  • 17. J. MUNKRES, Algorithms for the Assignment and Transportation Problems, S.I.A.M. Journal, Vol. 5, 1957, pp. 83-97. [MR: 93429] [Zbl: 0083.15302]
  • 18. E. ROOHY-LALEH, Improvement to the Theoretical Efficiency of the Network Simplex Method, Ph. D. Thesis, Carleton University, 1981. [MR: 2631943]
  • 19. V. SRINIVASEN and G. L. THOMSON, Cost Operator Algorithms for the Transportation Problem, Mathematical Programming, Vol. 12, 1977, pp. 372-391. [MR: 451730] [Zbl: 0362.90058]
  • 20. G. L. THOMSON, A Recursive Method for the Assignment Problems, Annals of Discrete Mathematics, Vol. 11, 1981, pp. 319-343. [Zbl: 0469.90051]
  • 21. N. TOMIZAWA, On some Techniques Usefull for Solution of Transportation Network Problems, Network, Vol. 1, 1972, pp. 173-194. [MR: 297347] [Zbl: 0253.90015]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.