Free Access
Issue
RAIRO-Oper. Res.
Volume 22, Number 3, 1988
Page(s) 269 - 289
DOI https://doi.org/10.1051/ro/1988220302691
Published online 06 February 2017
  • 1. M. L. BALINSKI, Signatures des points extrêmes du polyhèdres dual du problème de transport, C.R. Acad. Sci. Paris, 296, Série I, pp. 456-459, 1983. [MR: 701910] [Zbl: 0527.90069] [Google Scholar]
  • 2. M. L. BALINSKI, Signature Methods for the Assignment Problem, Operations Research, 33, 1985, pp. 527-537. [MR: 791705] [Zbl: 0583.90064] [Google Scholar]
  • 3. M. L. BALINSKI, A Competitive (dual) Simplex Method for the Assignment Problem, Mathematical Programming, 34, 1986, pp. 125-141. [MR: 838474] [Zbl: 0596.90064] [Google Scholar]
  • 4. M. L. BALINSKI and R. E. GOMORY, A Primal Method for the Assignment and Transportation Problems, Management Science, 10, 1964, pp. 578-593. [Google Scholar]
  • 5. R. BARR, F. GLOVER and D. KLINGMAN, The Alternating path Basis Algorithm for Assignment Problems, Mathematical Programming, Vol. 13, 1977, pp. 1-13. [MR: 444039] [Zbl: 0378.90097] [Google Scholar]
  • 6. D. BERTSEKAS, A new algorithm for the Assignment Problem, Mathematical Programming, Vol. 21, 1981, pp. 152-171. [MR: 623835] [Zbl: 0461.90069] [Google Scholar]
  • 7. W. H. CUNNINGHAM, A Network Simplex Method, Mathematical Programming, Vol. 11, 1976, pp. 105-116. [MR: 462532] [Zbl: 0352.90039] [Google Scholar]
  • 8. W. H. CUNNINGHAM and A. B. MARSH, III, A Primai Algorithm for Optimum Matching, Mathematical Programming Study, 8, 1978, pp. 50-72. [Zbl: 0409.90081] [Google Scholar]
  • 9. E. A. DINIC and M. A. KRONRAD, An Algorithm for the Solution of the Assignment Problem, Soviet Mathematics Doklady, Vol. 10, 1969, pp. 248-264. [Zbl: 0213.44801] [Google Scholar]
  • 10. J. ENDMONDS and R. M. KARP, Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems, Journal of the Association for Computing Machinery, Vol. 19, 1972, pp. 248-264. [Zbl: 0318.90024] [Google Scholar]
  • 11. L. R. FORD and D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton, 1962. [MR: 159700] [Zbl: 0106.34802] [Google Scholar]
  • 12. D. GOLDFARB, Efficient dual Simplex Methods for the Assignment Problem, Mathematical Programming, Vol. 33, 1985, pp. 127-203. [MR: 808910] [Zbl: 0578.90051] [Google Scholar]
  • 13. M. S. HUNG, A Polynomial Simplex Method for the Assignment Problem, Operations Research, Vol. 31, 1983, pp. 595-600. [MR: 709237] [Zbl: 0519.90056] [Google Scholar]
  • 14. M. S. HUNG and W. O. ROM, Solving the Assignment Problem by Relaxation, Operations Research, Vol. 28, 1980, pp. 969-982. [MR: 584900] [Zbl: 0441.90062] [Google Scholar]
  • 15. H. W. KUHN, The Hungarian Method for the Assignment Problem, Naval Research Logistics Quarterly, Vol. 2, 1955, pp. 83-97. [MR: 75510] [Zbl: 0143.41905] [Google Scholar]
  • 16. E. LAWLER, Combinatorial Optimization, Network and Matroids, Holt, Rinchart and Winston, New York, 1976. [MR: 439106] [Zbl: 0413.90040] [Google Scholar]
  • 17. J. MUNKRES, Algorithms for the Assignment and Transportation Problems, S.I.A.M. Journal, Vol. 5, 1957, pp. 83-97. [MR: 93429] [Zbl: 0083.15302] [Google Scholar]
  • 18. E. ROOHY-LALEH, Improvement to the Theoretical Efficiency of the Network Simplex Method, Ph. D. Thesis, Carleton University, 1981. [MR: 2631943] [Google Scholar]
  • 19. V. SRINIVASEN and G. L. THOMSON, Cost Operator Algorithms for the Transportation Problem, Mathematical Programming, Vol. 12, 1977, pp. 372-391. [MR: 451730] [Zbl: 0362.90058] [Google Scholar]
  • 20. G. L. THOMSON, A Recursive Method for the Assignment Problems, Annals of Discrete Mathematics, Vol. 11, 1981, pp. 319-343. [Zbl: 0469.90051] [Google Scholar]
  • 21. N. TOMIZAWA, On some Techniques Usefull for Solution of Transportation Network Problems, Network, Vol. 1, 1972, pp. 173-194. [MR: 297347] [Zbl: 0253.90015] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.