Free Access
Issue
RAIRO-Oper. Res.
Volume 23, Number 3, 1989
Page(s) 237 - 267
DOI https://doi.org/10.1051/ro/1989230302371
Published online 06 February 2017
  • 1. M. ALLAIS, The Foundations of a Positive Theory of Choice Involving Risk and a Criticism of the Postulate and Axioms of the American School ( 1952, traduit du Français), dans M. ALLAIS et O. HAGEN Ed., Expected Utility Hypotheses and the Allais Paradox, D. Reidel, Dordrecht, 1979, p. 27-145. [MR: 568863]
  • 2. A. CHATEAUNEUF et J. Y. JAFFRAY, Some Characterizations of Lower Probabilities and Other Monotone Capacities through the Use of Möbius Inversion, Mathematical Social Sciences, vol. 17, 1989 (à paraître). [MR: 1006179] [Zbl: 0669.90003]
  • 3. G. CHOQUET, Théorie des capacités, Ann. Inst. Fourier (Grenoble), V, 1953, p. 131-295. [EuDML: 73714] [Zbl: 0064.35101]
  • 4. M. COHEN et J. Y. JAFFRAY, Rational Behavior Under Complete Ignorance, Econometrica, vol. 48, p. 1281-1299. [MR: 582688] [Zbl: 0436.90006]
  • 5. M. COHEN et J. Y. JAFFRAY, Approximations of Rational Criteria Under Complete Ignorance and the Independence Axiom. Theory and Decision, vol. 15, 1983, p. 121-150. [MR: 709400] [Zbl: 0517.90001]
  • 6. A. P. DEMPSTER, Upper and Lower Probabilities Induced by a Multivalued Mapping, Annals of Mathematical Statistics, vol. 38, 1967, p. 325-339. [MR: 207001] [Zbl: 0168.17501]
  • 7. D. ELLSBERG, Risk, Ambiguity and the Savage Axioms, Quaterly J. of Economics, vol. 75, 1961, p. 643-669. [Zbl: 1280.91045]
  • 8. P. C. FISHBURN, Utility theory for decision making, Wiley, New York, 1970. [MR: 264810] [Zbl: 0213.46202]
  • 9. P. C. FISHBURN, The foundations of Expected Utility, D. Reidel Publishing Company, Dordrecht, 1982. [MR: 723663] [Zbl: 0497.90001]
  • 10. J. C. HERSHEY, H. C. KUNREUTHER et P. J. SCHOEMAKER, Sources of bias in assessment procedures for utility functions, Management Sci., vol. 28, 1986, p. 936-954. [Zbl: 0487.90013]
  • 11. I. N. HERSTEIN et J. MILNOR, An Axiomatic Approach to Measurable Utility, Econometria, vol. 21, 1953, p. 291-297. [MR: 61356] [Zbl: 0050.36705]
  • 12. L. HURWICZ, Optimality Criteria for Decision Making Under Ignorance, Cowles Commission discussion paper, Statistics # 370, 1951, mimeographed.
  • 13. T. ICHIISHI, Super-Modularity: Applications to Convex Games and to the Greedy Algorithm for LP, J. Econom. Thory, vol. 25, 1981, p. 283-286. [MR: 640200] [Zbl: 0478.90092]
  • 14. J. Y. JAFFRAY, Jeux contre la Nature, Economies et Sociétés, XIV, 1980, p. 1345-1367.
  • 15. J. Y. JAFFRAY, Linear Utility Theory for Belief Functions, Operations Research Letters, vol. 8, 1989, p. 107-112. [MR: 995970] [Zbl: 0673.90010]
  • 16. N. E. JENSEN, An Introduction to Bernoullian Utility Theory. I: Utility Functions, Swedish Journal of Economics, vol. 69, 1967, p. 163-183.
  • 17. D. KAHNEMAN et A. TVERSKY, Prospect Theory: an Analysis of Decision Under Risk, Econometrica, vol. 47, 1979, p. 263-291. [Zbl: 0411.90012]
  • 18. J. VON NEUMANN et O. MORGENSTERN, Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1944. [MR: 11937] [Zbl: 0053.09303]
  • 19. A. REVUZ, Fonctions croissantes et mesures sur les espaces topologiques ordonnés, Ann. Instit. Fourier (Grenoble), VI, 1955, p. 187-269. [EuDML: 73725] [MR: 88535] [Zbl: 0074.28201]
  • 20. G. SHAFER, A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976. [MR: 464340] [Zbl: 0359.62002]
  • 21. G. SHAFER, allocations of probability, Ann. Prob., vol. 7, 1979, p. 827-839. [MR: 542132] [Zbl: 0414.60002]
  • 22. L. S. SHAPLEY, Cores of Convex Games, Internat. J. Game Theory 1, 1971, p. 11-26. [MR: 311338] [Zbl: 0222.90054]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.