Free Access
RAIRO-Oper. Res.
Volume 23, Number 3, 1989
Page(s) 289 - 302
Published online 06 February 2017
  • [BER, 70] C. BERGE, Graphes et Hypergraphes, Dunod, Paris. [MR: 357173] [Zbl: 0213.25702] [Google Scholar]
  • [BIL, 86] A. BILLIONNET, On Interval Graphs and Matrice Profiles, R.A.I.R.O. Operations Research, Vol. 20, No. 3, août, pp. 245-256. [EuDML: 104904] [MR: 872642] [Zbl: 0606.05063] [Google Scholar]
  • [CUT-MCK, 69] E. CUTHILL and J. McKEE, Reducing the Bandwidth of Sparse Symmetric Matrices, Proc. 24th Nat. Conf. Assoc. Comput. Mach., ACM Publ., pp. 157-172. [Google Scholar]
  • [EVE, 79] G. C. EVERSTINE, A Comparison of Three Resequencing Algorithms for Reduction of Matrix Profile and Wavefront, Int. J. for Num. Meth. in engineering, Vol. 14, pp. 837-853. [Zbl: 0401.73082] [Google Scholar]
  • [GEO, 71] A. GEORGE, Computer Implementation of the Finite Element Method, STAN-CS-71-208, Computer Science Dept., Stanford Univ., Calif. [Google Scholar]
  • [GEO-LIU, 81] A. GEORGE and J. W. H. LIU, Computer Solutions of Large Sparse Positive Definite Systems, Prentice Hall, Englewood Cliffs, New Jersey, 324 p. [MR: 646786] [Zbl: 0516.65010] [Google Scholar]
  • [GIB-POO-STO, 76] N. E. GIBBS, W. G. POOLE and P. K. STOCKMEYER, An Algorithm for Reducing the Bandwidth and Profile of a Sparse Matrix, S.I.A.M. J. Numer. Anal., Vol. 13, No. 2, April, pp. 236-250. [MR: 501810] [Zbl: 0329.65024] [Google Scholar]
  • [GIB-POO-STO, 76] N. E. GIBBS, W. G. POOLE and P. K. STOCKMEYER, A Comparison of Several Bandwidth and Profile Reduction Algorithms, A.C.M. Transactions on Math. Software, Vol. 2, No. 4, December, pp. 322-330. [Zbl: 0345.65014] [Google Scholar]
  • [GOL, 80] M. C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 284 p. [MR: 562306] [Zbl: 0541.05054] [Google Scholar]
  • [KIN, 70] I. P. KING, An Automatic Reordering Scheme for Simultaneous Equations Derived from Network Systems. Int. J. Numer. Meth. Engrg., Vol. 2, pp. 523-533. [Google Scholar]
  • [LEV, 71] R. LEVY, Resequencing of the Structural Stiffness Matrix to Improve Computational Efficiency, J.P.L. Quart Tech. Rev., Vol. 1, pp. 61-70. [Google Scholar]
  • [LEW, 82] J. G. LEWIS, Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms, A.C.M. Transactions on Mathematical Software, Vol. 8, No. 2, June, pp. 180-189. [Zbl: 0478.65026] [Google Scholar]
  • [SHI, 84] D. R. SHIER, Some Aspects of Perfect Elimination Orderings in Chordal Graphs, Discrete Applied Mathematics, Vol. 7, pp. 325-331. [MR: 736895] [Zbl: 0537.05069] [Google Scholar]
  • [TAR, 76] R. E. TARJAN, Graph Theory and Gaussian Elimination in Sparse Matrix Computations, J. R. BUNCH and D. J. ROSE Eds., Academic Press, New York, pp. 3-22. [Zbl: 0347.65017] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.