Free Access
RAIRO-Oper. Res.
Volume 23, Number 4, 1989
Page(s) 319 - 341
Published online 06 February 2017
  • 1. D. P. BERTSEKAS, Projected Newton Methods for Optimization problems with simple constraints, SIAM J. Control Optim., Vol. 20, 1982, pp. 221-246. [MR: 646950] [Zbl: 0507.49018]
  • 2. M. J. BEST and K. RITTER, An Effective Algorithm for Quadratic Minimization Problems, MRC Tech. Rep. 1691, Mathematîcs Research Center, University of Wisconsin-Madison, 1976.
  • 3. A. BJORCK, A Direct Method for Sparse Least-Squares Problems with Lower and Upper Bounds, Department of Mathematics, Linkoping University, Linkoping, Sweden, 1987. [Zbl: 0659.65039]
  • 4. P. H. CALAMAI and J. J. MORÉ, Projected Gradient Methods for Linearly Constrained Problems, Mathematical Programming, Vol. 39, 1987, pp. 93-116. [MR: 909010] [Zbl: 0634.90064]
  • 5. J. CEA and R. GLOWINSKI, Sur des méthodes d'optimisation par relaxation, RAIRO R-3, 1953, pp. 5-32. [Zbl: 0279.90033]
  • 6. A. K. CLINE, C. B. MOLER, G. W. STEWART and J. H. WILKINSON, An Estimate of the Condition Number of a Matrix, SIAM J. Numer. Anal., Vol. 16, 1979, pp. 368-375. [MR: 526498] [Zbl: 0403.65012]
  • 7. R. S. DEMBO and U. TULOWITZKI, On the Minimization of Quadratic Functions Subject to Box Constraints, Working paper series B 71, School of Organization and Management, Yale University, New Haven, 1987.
  • 8. J. E. DENNIS and R. S. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, NJ, 1983. [MR: 702023] [Zbl: 0579.65058]
  • 9. R. FLETCHER and C. M. REEVES, Function Minimization by Conjugate Gradients, Computer J., Vol. 2, 1964, pp. 149-153. [MR: 187375] [Zbl: 0132.11701]
  • 10. P. E. GILL and W. MURRAY, Minimization Subject to Bounds on the Variables, NPL report NAC 72, National Physical Laboratory, Teddington, 1976.
  • 11. P. E. GILL and W. MURRAY, Numerically Stable Methods for Quadratic Programming, Mathematical Programming, Vol. 14, 1978, pp. 349-372. [MR: 484411] [Zbl: 0374.90054]
  • 12. P. E. GILL, W. MURRAY, M. A. SAUNDERS and M. WRIGHT, A Note on Nonlinear Approaches to Linear Programmong, TR SOL 86-7, Systems Optimization Labotory, Stanford University, Stanford, 1986.
  • 13. P. E. GILL, W. MURRAY and M. WRIGHT, Practical Optimization, Academic Press, London-New York, 1981. [MR: 634376] [Zbl: 0503.90062]
  • 14. G. H. GOLUB and C. F. VAN LOAN, Matrix Computations, The John Hopkins University Press, Baltimore, 1983. [MR: 733103] [Zbl: 0733.65016]
  • 15. G. T. HERMAN, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. Academic Press, New York, 1980. [MR: 630896] [Zbl: 0538.92005]
  • 16. N. KARMARKAR, A New Polynomial-Time Algorithm for Linear Programming, Combinatorica, Vol. 4, 1984, pp. 373-395. [MR: 779900] [Zbl: 0557.90065]
  • 17. P. LÖTSTEDT, Solving the Minimal Least Squares Problem Subject to Bounds on the Variables, BIT, Vol. 24, 1984, pp. 206-224 [MR: 753549] [Zbl: 0546.65041]
  • 18. J. J. MORÉ, Numerical Solution of Bound Constrained Problems, ANL/MCS-TM-96, Math. and Comp. Sci. Div., Argonne National Laboratory, Argonne, Illinois, 1987. [MR: 951428] [Zbl: 0655.65086]
  • 19. D. P. O'LEARY, A Generalized Conjugate Gradient Algorithm for Solving a Class of Quadratic Programming Problems, Linear Algebra and its Applications, Vol.34, 1980, pp. 371-399. [MR: 591439] [Zbl: 0464.65039]
  • 20. M. J. D. POWELL, Subroutine GSRCH, Harwell Subroutine Library, Harwell, Oxfordshire, 1980.
  • 21. B. T. POLYAK, The Conjugate Gradient Method in Extremal Problems, USSR Computational Mathematics and Mathematical Physics, Vol. 9, 1969, pp. 94-112. [Zbl: 0229.49023]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.