Free Access
RAIRO-Oper. Res.
Volume 24, Number 1, 1990
Page(s) 67 - 91
Published online 06 February 2017
  • O. D. ANDERSON, Time Series Analysis and Forecasting: The Box-Jenkins Approach, Butterworths: London and Boston, 1975. [MR: 448760] [Zbl: 0377.62053] [Google Scholar]
  • O. D. ANDERSON, Time series analysis and forecasting: a further look at the Box-Jenkins approach, Cahiers du CERO, vol. 19, 1977 a, pp. 233-256. [MR: 448760] [Zbl: 0377.62053] [Google Scholar]
  • O. D. ANDERSON, Formulae for the expected values of the sampled variance and covariances from series generated by general autoregressive intergrated moving average processes of order (p, d, q), Sankhya B, Vol. 41, 1979 a, pp. 177-195. [MR: 637675] [Zbl: 0485.62103] [Google Scholar]
  • O. D. ANDERSON, The autocovariance structures associated with general unit circle nonstationary factors in the autoregressive operators of otherwise stationary ARMA time series models, Cahiers du CERO, Vol. 21, 1979 b, pp. 221-237. [MR: 558419] [Zbl: 0425.62070] [Google Scholar]
  • O. D ANDERSO, Some sample autocovariance function results for a once integrated q-th order moving average process, Statistica, Vol. 39, 1979 c, pp. 287-299. [MR: 547281] [Zbl: 0407.62071] [Google Scholar]
  • O. D ANDERSON, Indentification of linear time processes: an augmented Box-Jenkins approach, Working Paper, 1990. [Google Scholar]
  • O. D ANDERSON and J. G. DE GOOIJER, On discriminating between IMA (1, 1) and ARMA (1, 1) processes: some extensions to a paper by Wichern, The Statistician, Vol. 28, 1979, pp. 119-133. [Google Scholar]
  • O. D. ANDERSON and J. G. DE GOOIJER, Formulae for the covariance structure of the sampled autocovariances from series generated by general autoregressive moving average processes of order (p, d, q), d=0 or 1. Sankya B, Vol. 45, 1983, pp. 249-256. [MR: 748469] [Zbl: 0533.62084] [Google Scholar]
  • O. D. ANDERSON and J. G. DE GOOIJER, Discriminating between IMA (1, 1) and ARMA (1, 1) models: a simulation study; Working Paper, 1987. [Google Scholar]
  • O. D. ANDERSON and J. G. DE GOOIJER, Sampled autocovariance and autocorrelation results for linear time processes, Communications in Statistics (Simulation and Computation), Vol. 17, 1988, pp. 489-513. [MR: 955337] [Zbl: 0695.62212] [Google Scholar]
  • G. E. P. Box and G. M. JENKINS, Time Series Analysis, Forecasting and Control, Holden Day, San Francisco (Revised Edition), 1976. [MR: 436499] [Zbl: 0363.62069] [Google Scholar]
  • H. E. DANIELS, The approximate distribution of serial correlation coefficients, Biometrika, Vol. 43, 1956, pp. 169-185. [MR: 79395] [Zbl: 0074.14202] [Google Scholar]
  • J. P. IMHOF, Computing the distribution of quadratic forms in normal variables, Biometrika, Vol. 48, 1961, 419-426. [MR: 137199] [Zbl: 0136.41103] [Google Scholar]
  • M. G. KENDALL, Note on bias in the estimation of autocorrelation, Biometrika, vol. 41, 1954, pp. 403-404. [MR: 65124] [Zbl: 0056.13303] [Google Scholar]
  • D. W. WICHERN, The behaviour of the sample autocorrelation function for an intergrated moving average process, Biometrika, Vol. 60, 1973, pp. 235-239. [Zbl: 0261.62070] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.