Free Access
Issue
RAIRO-Oper. Res.
Volume 25, Number 1, 1991
Page(s) 31 - 43
DOI https://doi.org/10.1051/ro/1991250100311
Published online 07 February 2017
  • 1. J. E. BEASLEY, A Note on Solving Large p-Median Problems, European Journal of Operational Research, 1985, 27, pp. 270-273. [MR: 811091] [Zbl: 0569.90021] [Google Scholar]
  • 2. O. BILDE and J. KRARUP, Sharp Lower Bounds and Efficient Algorithms for the Simple Plant Location Problem, Annals of Discrete Mathematics, 1977, 1, pp. 79-97. [MR: 462608] [Zbl: 0364.90068] [Google Scholar]
  • 3. T. B. BOFFEY and J. KARKAZIS, p-Medians and Multi-Medians, Journal of the Operations Research Society, 1984, 35, pp. 57-64. [Zbl: 0526.90036] [Google Scholar]
  • 4. E. W. CHENEY, Introduction to approximation theory, McGraw-Hill, New York, 1966. [MR: 222517] [Zbl: 0535.41001] [Google Scholar]
  • 5. N. CHRISTOFIDES, Graph Theory - an Algorithmic Approach, Academic Press, London, 1975. [MR: 429612] [Zbl: 0321.94011] [Google Scholar]
  • 6. N. CHRISTOFIDES and J. E. BEASLEY, A Tree Search Algorithm for the p-Median Problem, European Journal of Operational Research, 1982, 10, pp. 196-204. [MR: 666133] [Zbl: 0481.90020] [Google Scholar]
  • 7. D. ERLENKOTTER, A Dual-Based Procedure for Uncapacitated Facility Location, Operations Research, 1978, 26, pp. 992-1009. [MR: 503845] [Zbl: 0422.90053] [Google Scholar]
  • 8. R. D. GALVÃO, A Dual-Bounded Algorithm for the p-Median Problem, Operations Research, 1980, 28, pp. 1112-1121. [MR: 589674] [Zbl: 0451.90040] [Google Scholar]
  • 9. R. D. GALVÃO and L. A. RAGGI, A Method for Solving to Optimality Uncapacitated Location Problems, Annals of Operations Research, 1989, 18, pp. 225-244. [MR: 999163] [Zbl: 0707.90060] [Google Scholar]
  • 10. H. J. GREENBERG, The One-Dimensional Generalized Lagrange Multiplier Problem, Operations Research, 1977, 25, pp. 338-345. [MR: 440913] [Zbl: 0383.90091] [Google Scholar]
  • 11. P. HANJOUL and D. PEETERS, A Comparison of Two Dual-Based Procedures for Solving the p-Median Problem, European Journal of Operational Research, 1985, 20, pp. 387-396. [MR: 800914] [Zbl: 0565.90011] [Google Scholar]
  • 12. M. KÖRKEL, On the Exact Solution of Large-Scale Simple Plant Location Problems, European Journal of Operational Research, 1989, 39, pp. 157-173. [MR: 995736] [Zbl: 0673.90032] [Google Scholar]
  • 13. J. KRARUP and P. M. PRUZAN, The Simple Plant Location Problem: Survey and Synthesis, European Journal of Operational Research, 1983, 12, pp. 36-81. [MR: 691416] [Zbl: 0506.90018] [Google Scholar]
  • 14. A. A. KUEHN and M. J. HAMBURGER, A Heuristic Program for Locating WareHouses, Management Science, 1963, 9, pp. 643-666. [Google Scholar]
  • 15. L. P. MAVRIDES, An Indirect Method for the Generalized k-Median Problem Applied to Lock-Box Location, Management Science, 25, pp. 990-996. [Zbl: 0465.90028] [Google Scholar]
  • 16. P. B. MIRCHANDANI and R. JAGANNATHAN, Discrete Facility Location with NonLinear Diseconomies in Fixed Costs, Annals of Operations Research, 1989, 18, pp. 213-224. [MR: 999162] [Zbl: 0707.90061] [Google Scholar]
  • 17. P. B. MIRCHANDANI, A. OUDJIT and R. T. WONG, "Multidimensional" Extensions and a Nested Dual Approach for the m-Median Problem, European Journal of Operational Research, 1985, 21, pp. 121-137. [MR: 797311] [Zbl: 0587.90037] [Google Scholar]
  • 18. R. A. WHITAKER, A Fast Algorithm for the Greedy Interchange for Large-Scale Clustering and Median Location Problems, Canadian Journal of Operations Research and Information Processing, 1983, 21, pp. 95-108. [Zbl: 0527.90017] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.