Free Access
Issue |
RAIRO-Oper. Res.
Volume 25, Number 1, 1991
|
|
---|---|---|
Page(s) | 65 - 72 | |
DOI | https://doi.org/10.1051/ro/1991250100651 | |
Published online | 07 February 2017 |
- 1. Y. P. ANEJA, R. CHANDRASEKARAN and K. P. K. NAIR, A Note on the m-Center Problem with Rectilinear Distances, European J. Oper. Res., 1988, 35, pp. 118-123. [MR: 932107] [Zbl: 0699.90028] [Google Scholar]
- 2. C. CHARALAMBUOUS, Extension of the Elzinga and Hearn Algorithm to the Weighted Case , Oper. Res., 1983, 30, pp. 591-594. [Zbl: 0484.90030] [Google Scholar]
- 3. L. COOPER, Heuristic Methods for Location-Allocation Problems, S.I.A.M. Review, 1964, 6, pp. 37-52. [MR: 160664] [Zbl: 0956.90014] [Google Scholar]
- 4. L. COOPER, N-Dimensional Location Models: An Application to Cluster Analysis, J. Regional Science, 1973, 13, pp. 41-54. [Google Scholar]
- 5. P. M. DEARING and R. L. FRANCIS, A Minimax Location Problem on a Network, Transportation Science, 1974, 8, pp. 333-343. [MR: 441298] [Google Scholar]
- 6. Z. DREZNER, The p-Center Problem, Heuristics and Optimal Algorithms, J. Oper. Res. Society, 1984, 35, pp. 741-748. [Zbl: 0544.90024] [Google Scholar]
- 7. Z. DREZNER, On the Rectangular p-Center Problem, Naval Research Logistics, 1987, 34, pp. 229-234. [MR: 880830] [Zbl: 0614.90034] [Google Scholar]
- 8. Z. DREZNER and G. O. WESOLOWSKY, Single Facility Ip-Distance Minimax Location, S.I.A.M. J. of Algebraic and Discrete Methods, 1980, 1, pp. 315-321. [MR: 586159] [Zbl: 0501.90031] [Google Scholar]
- 9. M. E. DYER and A. M. FRIEZE, A Simple Heuristic for the p-Center Problem, Oper. Res. Letters, 1985, 3, pp. 285-288. [MR: 797340] [Zbl: 0556.90019] [Google Scholar]
- 10. H. A. EISELT and G. CHARLESWORTH, A Note on p-Center Problems in the Plane, Transportation Science, 1986, 20, pp. 130-133. [MR: 878973] [Zbl: 0629.90031] [Google Scholar]
- 11. R. L. FRANCIS and J. A. WHITE, Facility Layout and Location: an Analytical Approach, Pretince Hall, 1974. [Google Scholar]
- 12. R. S. GARFINKEL, A. W. NEEBE and M. R. RAO, The m-Center Problem: Minimax Facility Location, Management Science, 1977, 23, pp. 1133-1142. [Zbl: 0369.90125] [Google Scholar]
- 13. S. L. HAKIMI, E. F. SCHMEICHEL and J. G. PIERCE, On p-Centers in Network, Transportation Science, 1978, 12, pp. 1-15. [MR: 506674] [Google Scholar]
- 14. G. Y. HANDLER, Complexity and Efficiency in Minimax Network Location, in Combinatorial Optimization, Christofïdes and Mingozzi Ed., 1979, pp. 281-314. [Zbl: 0427.90082] [Google Scholar]
- 15. G. Y. HANDLER and P. B. MIRCHANDANI, Location in Networks, M.I.T. Press, Cambridge, 1979. [MR: 525692] [Google Scholar]
- 16. D. S. HOCHBAUM and D. B. SHMOYS, A Best Possible Heuristic for the k-Center Problem, Math. Oper. Res., 1985, 10, pp. 180-184. [MR: 793876] [Zbl: 0565.90015] [Google Scholar]
- 17. W. L. HSU and G. L. NEMHAUSER, Easy and Hard Bottleneck Location Problems, Discrete Appl. Math., 1979, 1, pp. 209-216. [MR: 549500] [Zbl: 0424.90049] [Google Scholar]
- 18. O. KARIV and S. L. HAKIMI, An Algorithmic Approach to Network Location Problems, S I.A.M. J. Applied Math., 1979, 37, pp. 513-538. [MR: 549138] [Zbl: 0432.90074] [Google Scholar]
- 19. S. MASUYAMA, T. IBARAKI and T. HASEGAWA, The Computational Complexity of the m-Center Problem on the Plane. Transaction of the IECE of Japan E 64/2, 1981, 2, pp.57-64. [Google Scholar]
- 20. N. MEGIDDO and K. J. SUPOWIT, On the Complexity of Some Common Geometric Location Problems, S.I.A.M. J, of Cornp., 1984, 13, pp. 182-196. [MR: 731036] [Zbl: 0534.68032] [Google Scholar]
- 21. E. MINIEKA, A Polynomial Time Algorithm for Finding the Absolute Center of a Network, Networks, 1981, 11, pp. 351-355. [MR: 645111] [Zbl: 0738.90045] [Google Scholar]
- 22. B. PELEGRIN, General Approach for the 1-Center Problem, Cahiers du Centre d'Etudes de Recherche Opérationnelle, 1986, 28, pp. 293-302, [MR: 885769] [Zbl: 0615.90034] [Google Scholar]
- 23. B. PELEGRIN, The p-Center Problem Under Bidirectional Polyhedral Norms, in Proceedings III Meeting E.W.G. on Locational Analysis, pp. 151-169, Sevilla (Spain), 1988. [Google Scholar]
- 24. B. PELEGRIN, The p-Center Problem in Rn with Weighted Tchebycheff Norms, Working paper, Dpto. Matemática Aplicada y Estadística, 1990, J, Oper. Res. Society (submitted). [Google Scholar]
- 25. J. PLESNIK, A Heuristic for the p-Center Problem in Graphs, Discr. Appl. Math., 1987, 17, pp.263-268. [MR: 890636] [Zbl: 0637.05020] [Google Scholar]
- 26. H. SPÄTH, Computational Experience with the Exchange method, European J. Oper. Res., 1977, 1, pp. 23-31. [Zbl: 0353.65004] [Google Scholar]
- 27. H. SPÄTH, Cluster Disection and Analysis, Ellis Horwood Limited, 1985. [Zbl: 0584.62094] [Google Scholar]
- 28. H. B. TEITZ and P. BART, Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph, Operat. Res., 1968, 16, pp. 955-961. [Zbl: 0165.22804] [Google Scholar]
- 29. J. VIJAY, An Algorithm for the p-Center Problem in the Plane, Transportation Science, 1985, 19, pp. 235-245. [Zbl: 0608.90020] [Google Scholar]
- 30. C. D. T. WATSON-GANDY, The Multi-Facility Minimax Weber Problem, European J. Oper. Res., 1984, 18, pp. 44-50. [MR: 761947] [Zbl: 0542.90033] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.