Free Access
RAIRO-Oper. Res.
Volume 25, Number 3, 1991
Page(s) 265 - 275
Published online 06 February 2017
  • 1. J. P. BORDAT, Efficient Polynomial Algorithms for Distributive Lattices, accepté pour publication par Discrete Appl. Math. [MR: 1113538] [Zbl: 0733.06007] [Google Scholar]
  • 2. V. BOUCHITTE et M. HABIB, The Calculation of Invariants for Ordered Sets, Algorithms and Order, I. RIVAL éd., Kluwer Acad. Publ., Dordrecht, 1989, p. 231-279. [Zbl: 1261.06002] [MR: 1037785] [Google Scholar]
  • 3. C. J. COLBOURN et W. R. PULLEYBLANK, Minimizing Setups in Ordered Sets with Fixed Width, Order, 1985, 1, p. 225-229. [MR: 779387] [Zbl: 0557.06002] [Google Scholar]
  • 4. R. P. DILWORTH, A Decomposition Theorem for Partially Ordered Sets, Ann. of Math., 1950, 51, p. 161-166. [MR: 32578] [Zbl: 0038.02003] [Google Scholar]
  • 5. G. GRATZER, General lattice Theory, Academic Press, 1978. [MR: 509213] [Zbl: 0436.06001] [Google Scholar]
  • 6. E. L. LAWLER, Efficient Implementation of Dynamic Programming Algorithms for Sequencing Problems, Rep. BW106/79, Stichting Matematisch Centrum, Amsterdam, 1979. [Zbl: 0416.90036] [Google Scholar]
  • 7. E. L. LAWLER, J. K. LENSTRA et A. H. G. RINNOOY KHAN, Recent Developments in Deterministic Sequencing and Scheduling: A Survey, M. A. H. DEMPSTER et al., éd., Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 1982, p. 35-73. [MR: 663575] [Zbl: 0482.68035] [Google Scholar]
  • 8. R. H. MOHRING, Scheduling Problems with a Singular Solution, Discrete Appl. Math., 1982, 16, p.225-239. [MR: 686310] [Zbl: 0489.90056] [Google Scholar]
  • 9. R. H. MOHRING, Computationally Tractable Classes of Ordered Sets, Algorithms and Order, I. RIVAL éd., Kluwer Acad. Publ., Dordrecht, 1989, p.105-113. [MR: 1037783] [Google Scholar]
  • 10. G. L. NEMHAUSER et L. E. TROTTER, Vertex Packings: Structural Properties and Algorithms, Math. Progr., 1975, 8, p. 232-248. [MR: 366738] [Zbl: 0314.90059] [Google Scholar]
  • 11. J. C. PICARD et M. QUEYRANNE, Structure of All Minimum Cuts in a Network and Applications, Math. Progr. Study, 1980, 13, p. 8-16. [MR: 592081] [Zbl: 0442.90093] [Google Scholar]
  • 12. W. POGUNTKE, Order-Theoretic Aspects of Scheduling, Combinatorics and Ordered sets (Arcata, Calif.), 1985, p. 1-32, Contemp. Math., 57, Amer. Math. Soc., Providence, R. I., 1986. [MR: 856231] [Zbl: 0595.06002] [Google Scholar]
  • 13. J. S. PROVAN et M. O. BALL, The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected, SIAM J. Comput., 1983, 12, p. 777-788. [MR: 721012] [Zbl: 0524.68041] [Google Scholar]
  • 14. L. SCHRAGEet K. R. BAKER, Dynamic Programming Solution for Sequencing Problems with Precedence Constraints. Oper. Res., 1978, 26, p. 444-449. [Zbl: 0383.90054] [Google Scholar]
  • 15. G. STEINER, Single Machine Scheduling with Precedence Constraints of Dimension 2, Math. Oper. Res., 1984, 9, p.248-259. [MR: 742260] [Zbl: 0541.90054] [Google Scholar]
  • 16. G. STEINER, An Algorithm to Generate the Ideals of a Partial Order, Oper. Res. Letters, 1986, 5, p.317-320. [MR: 875784] [Zbl: 0608.90075] [Google Scholar]
  • 17. G. STEINER, On Computing the Information Theoretic Bound for Sorting: Counting the Linear Extensions of Posets; Res. Report n° 87459-OR, McMaster University, Hamilton, Ontario, Canada, 1987. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.