Free Access
Issue
RAIRO-Oper. Res.
Volume 25, Number 3, 1991
Page(s) 265 - 275
DOI https://doi.org/10.1051/ro/1991250302651
Published online 06 February 2017
  • 1. J. P. BORDAT, Efficient Polynomial Algorithms for Distributive Lattices, accepté pour publication par Discrete Appl. Math. [MR: 1113538] [Zbl: 0733.06007]
  • 2. V. BOUCHITTE et M. HABIB, The Calculation of Invariants for Ordered Sets, Algorithms and Order, I. RIVAL éd., Kluwer Acad. Publ., Dordrecht, 1989, p. 231-279. [Zbl: 1261.06002] [MR: 1037785]
  • 3. C. J. COLBOURN et W. R. PULLEYBLANK, Minimizing Setups in Ordered Sets with Fixed Width, Order, 1985, 1, p. 225-229. [MR: 779387] [Zbl: 0557.06002]
  • 4. R. P. DILWORTH, A Decomposition Theorem for Partially Ordered Sets, Ann. of Math., 1950, 51, p. 161-166. [MR: 32578] [Zbl: 0038.02003]
  • 5. G. GRATZER, General lattice Theory, Academic Press, 1978. [MR: 509213] [Zbl: 0436.06001]
  • 6. E. L. LAWLER, Efficient Implementation of Dynamic Programming Algorithms for Sequencing Problems, Rep. BW106/79, Stichting Matematisch Centrum, Amsterdam, 1979. [Zbl: 0416.90036]
  • 7. E. L. LAWLER, J. K. LENSTRA et A. H. G. RINNOOY KHAN, Recent Developments in Deterministic Sequencing and Scheduling: A Survey, M. A. H. DEMPSTER et al., éd., Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 1982, p. 35-73. [MR: 663575] [Zbl: 0482.68035]
  • 8. R. H. MOHRING, Scheduling Problems with a Singular Solution, Discrete Appl. Math., 1982, 16, p.225-239. [MR: 686310] [Zbl: 0489.90056]
  • 9. R. H. MOHRING, Computationally Tractable Classes of Ordered Sets, Algorithms and Order, I. RIVAL éd., Kluwer Acad. Publ., Dordrecht, 1989, p.105-113. [MR: 1037783]
  • 10. G. L. NEMHAUSER et L. E. TROTTER, Vertex Packings: Structural Properties and Algorithms, Math. Progr., 1975, 8, p. 232-248. [MR: 366738] [Zbl: 0314.90059]
  • 11. J. C. PICARD et M. QUEYRANNE, Structure of All Minimum Cuts in a Network and Applications, Math. Progr. Study, 1980, 13, p. 8-16. [MR: 592081] [Zbl: 0442.90093]
  • 12. W. POGUNTKE, Order-Theoretic Aspects of Scheduling, Combinatorics and Ordered sets (Arcata, Calif.), 1985, p. 1-32, Contemp. Math., 57, Amer. Math. Soc., Providence, R. I., 1986. [MR: 856231] [Zbl: 0595.06002]
  • 13. J. S. PROVAN et M. O. BALL, The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected, SIAM J. Comput., 1983, 12, p. 777-788. [MR: 721012] [Zbl: 0524.68041]
  • 14. L. SCHRAGEet K. R. BAKER, Dynamic Programming Solution for Sequencing Problems with Precedence Constraints. Oper. Res., 1978, 26, p. 444-449. [Zbl: 0383.90054]
  • 15. G. STEINER, Single Machine Scheduling with Precedence Constraints of Dimension 2, Math. Oper. Res., 1984, 9, p.248-259. [MR: 742260] [Zbl: 0541.90054]
  • 16. G. STEINER, An Algorithm to Generate the Ideals of a Partial Order, Oper. Res. Letters, 1986, 5, p.317-320. [MR: 875784] [Zbl: 0608.90075]
  • 17. G. STEINER, On Computing the Information Theoretic Bound for Sorting: Counting the Linear Extensions of Posets; Res. Report n° 87459-OR, McMaster University, Hamilton, Ontario, Canada, 1987.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.