Free Access
Issue
RAIRO-Oper. Res.
Volume 27, Number 2, 1993
Page(s) 153 - 168
DOI https://doi.org/10.1051/ro/1993270201531
Published online 06 February 2017
  • 1. D. G. CANTOR and B. DIMSDALE, On Direction-Preserving Maps of Graphs, J. Comb. Theory, 1969, 6, pp. 165-176. [MR: 237385] [Zbl: 0181.51902] [Google Scholar]
  • 2. N. CHRISTOFIDES and S. KORMAN, A Computational Survey of Methods for the Set-Covering Problem, Management Science, 1975, 21, pp. 591-599. [MR: 418913] [Zbl: 0314.65029] [Google Scholar]
  • 3. D. G. CORNEIL, C.C. GOTLIEB and Y. M. LEE, Minimal Event-Node Network of Project Precedence Relation, Comm. A.C.M., 1973, 16, pp. 296-298. [Zbl: 0271.94022] [Google Scholar]
  • 4. B. DIMSDALE, Computer Construction of Minimal Project Networks, I.B.M. Syst. J., 1963, 2, pp. 24-36. [Google Scholar]
  • 5. A. C. FISHER, J. S. LIEBMAN and G. L. NEMHAUSER, Computer Construction of Project Networks, Comm. A.C.M., 1968, 11, pp. 493-497. [Zbl: 0169.20301] [Google Scholar]
  • 6. M. HAYES, The Role of Activity Precedence Relations in Node-Oriented Networks, in Project Planning by Network Analysis, North-Holland, Amsterdam, 1969, pp. 128 146. [Google Scholar]
  • 7. M. S. KRISHNAMOORTHY and N. DEO, Complexity of the Minimum-Dummy-Activities Problem in a PERT Network, Networks, 1979, 9, pp. 189-194. [MR: 546996] [Zbl: 0414.68018] [Google Scholar]
  • 8. P. MARCHIORO, A. MORGANA, R. PETRESCHI and B. SIMEONE, Adamant Digraphs, Discrete Math., 1988, 69, pp. 253-261. [MR: 940081] [Zbl: 0648.05023] [Google Scholar]
  • 9. D. J. MICHAEL, Optimal Representation of Activity Networks as Directed Acyclic Graphs, Ph. D. Thesis, 1991, North Carolina State University, Raleigh, NC 27695- 7913. [Google Scholar]
  • 10. M. MROZEK, A Note on Minimum-Dummy-Activities PERT Networks, R.A.I.R.O. Rech. Oper., 1984, 18, pp. 415-421. [EuDML: 104864] [MR: 776773] [Zbl: 0551.90094] [Google Scholar]
  • 11. M. MROZEK, Transitively Reduced and Transitively Closed Event Networks, Net-works, 1989, 19, pp. 47-72. [MR: 973564] [Zbl: 0669.90089] [Google Scholar]
  • 12. F. STERBOUL and D. WERTHEIMER, Comment Construire un Graphe PERT Minimal, R.A.I.R.O. Rech. Oper., 1980, 14, pp. 85-98. [EuDML: 104778] [MR: 609477] [Zbl: 0477.90028] [Google Scholar]
  • 13. J. SPINRAD, The Minimum Dummy Task Problem, Networks, 1986, 16, pp.331-348. [MR: 849951] [Zbl: 0644.90054] [Google Scholar]
  • 14. M. M. SYSLO, Optimal Constructions of Event-Node Networks, R.A.I.R.O., Rech. Oper., 1981, 15, pp. 241-260. [EuDML: 104788] [MR: 637195] [Zbl: 0464.90078] [Google Scholar]
  • 15. M. M. SYSLO, Optimal Construction of Reversible Digraphs, Discrete Applied Mathematics, 1984, 7, pp. 209-220. [Zbl: 0552.90047] [Google Scholar]
  • 16. M. M. SYSLO, A Graph-Theoretic Approach to the Jump-Number Problem, in Graphs and Order, I. RIVAL éd., D. Reidel, Dordrecht, 1985, pp. 185-215. [MR: 818497] [Zbl: 0563.05029] [Google Scholar]
  • 17. F. VASKO and G. WILSON, Hybrid Heuristics for the Minimum Cardinality Set Covering Problem, Naval Res. Log. Quart., 1986, 33, pp. 241-249. [MR: 841722] [Zbl: 0592.90065] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.